当前位置: X-MOL 学术Chemosphere › 论文详情
Characterization of lower Phong river dissolved organic matters and formations of unknown chlorine dioxide and chlorine disinfection by-products by Orbitrap mass spectrometry
Chemosphere ( IF 5.778 ) Pub Date : 2020-10-17 , DOI: 10.1016/j.chemosphere.2020.128653
Thirawit Prasert; Yoshihiro Ishii; Futoshi Kurisu; Charongpun Musikavong; Phanwatt Phungsai

Dissolved organic matter (DOM) have been reported as precursors of disinfection byproducts (DBPs) and its molecular characteristics are rarely investigated due to its complexity. In this study, changes in the characteristics of DOM were investigated in the lower Phong River in Thailand in dry season and after the first rain in rainy season, using a non-targeted analysis with Orbitrap mass spectrometry. The river was rich with CHO features dominated by lignin-like molecules, while lipid-like molecules increase after domestic wastewater discharges. Wastewater discharge released DOM with higher molecular weight (MW) that was less oxygenated (low O/C) and less oxidized (low carbon oxidation state [Cos]). A lake affected by anthropogenic activities contributed more oxidized DOM into the river, while surface runoff carried DOM that is more oxygenated (high O/C), less hydrogenated (low H/C), and more oxidized (high Cos) to the stream. Water treatment further modified DOM to be lower MW. Approximately three hundred Cl-containing features (CHOCl) detected upstream were also found downstream. Disinfection by chlorine (Cl2) or chlorine dioxide (ClO2) formed both CHO and CHOCl DBPs. Low chlorine dosage applied to upstream and downstream samples resulted in many common unknown DBPs while increasing chlorine dosage resulted in more unique DBPs. At the same dosage, Cl2 reacted with DOM more than ClO2, including more oxidized molecules that are refractory to ClO2. Both Cl2 and ClO2 produced chlorinated and non-chlorinated DBPs, and some DBPs were commonly found by both disinfections. Cl2-produced DBPs were more unsaturated (higher [DBE–O]/C) and oxidized (higher Cos) than ClO2-DBPs.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
西北大学
大连理工大学
湖南大学
华东师范大学
王要兵
浙江大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
李霄鹏
廖矿标
试剂库存
down
wechat
bug