当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Monocular image depth prediction without depth sensors: An unsupervised learning method
Applied Soft Computing ( IF 5.472 ) Pub Date : 2020-10-17 , DOI: 10.1016/j.asoc.2020.106804
Songnan Chen; Mengxia Tang; Jiangming Kan

Monocular image depth prediction is an interesting challenge in three-dimensional (3D) perception, the purpose of which is to obtain the geometric features of 3D scenes from two-dimensional (2D) images. At present, the deep learning method for monocular depth prediction has yielded good results, but this approach treats it as a supervised deep regression problem. A significant weakness of current methods is the need to collect reams of depth measurement data in actual scenarios for training. In this paper, we design a novel convolutional neural network (CNN) with an encoding and decoding structure to estimate the depth map from monocular RGB images based on basic principles of binocular stereo vision, and use rectified stereo pairs to train our network from scratch in an unsupervised learning method without any depth data. We also explore a new upsampling strategy to improve the output resolution, and introduce a new dynamic optimization strategy to enhance the training speed and prediction accuracy. Extensive experiments on the publicly available KITTI and Cityscapes datasets demonstrate that our approach is more accurate than competing methods. The findings of the proposed methodology illustrate that our CNN model can be utilized as depth completion from LIDAR images.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug