当前位置: X-MOL 学术Comp. Visual Media › 论文详情
Computing knots by quadratic and cubic polynomial curves
Computational Visual Media Pub Date : 2020-10-17 , DOI: 10.1007/s41095-020-0186-4
Fan Zhang, Jinjiang Li, Peiqiang Liu, Hui Fan

A new method is presented to determine parameter values (knot) for data points for curve and surface generation. With four adjacent data points, a quadratic polynomial curve can be determined uniquely if the four points form a convex polygon. When the four data points do not form a convex polygon, a cubic polynomial curve with one degree of freedom is used to interpolate the four points, so that the interpolant has better shape, approximating the polygon formed by the four data points. The degree of freedom is determined by minimizing the cubic coefficient of the cubic polynomial curve. The advantages of the new method are, firstly, the knots computed have quadratic polynomial precision, i.e., if the data points are sampled from a quadratic polynomial curve, and the knots are used to construct a quadratic polynomial, it reproduces the original quadratic curve. Secondly, the new method is affine invariant, which is significant, as most parameterization methods do not have this property. Thirdly, it computes knots using a local method. Experiments show that curves constructed using knots computed by the new method have better interpolation precision than for existing methods.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug