当前位置: X-MOL 学术Interface Focus › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The influence of base pair tautomerism on single point mutations in aqueous DNA
Interface Focus ( IF 4.4 ) Pub Date : 2020-10-16 , DOI: 10.1098/rsfs.2019.0120
A Gheorghiu 1 , P V Coveney 1, 2 , A A Arabi 1, 3
Affiliation  

The relationship between base pair hydrogen bond proton transfer and the rate of spontaneous single point mutations at ambient temperatures and pressures in aqueous DNA is investigated. By using an ensemble-based multiscale computational modelling method, statistically robust rates of proton transfer for the A:T and G:C base pairs within a solvated DNA dodecamer are calculated. Several different proton transfer pathways are observed within the same base pair. It is shown that, in G:C, the double proton transfer tautomer is preferred, while the single proton transfer process is favoured in A:T. The reported range of rate coefficients for double proton transfer is consistent with recent experimental data. Notwithstanding the approximately 1000 times more common presence of single proton transfer products from A:T, observationally there is bias towards G:C to A:T mutations in a wide range of living organisms. We infer that the double proton transfer reactions between G:C base pairs have a negligible contribution towards this bias for the following reasons: (i) the maximum half-life of the G*:C* tautomer is in the range of picoseconds, which is significantly smaller than the milliseconds it takes for DNA to unwind during replication, (ii) statistically, the majority of G*:C* tautomers revert back to their canonical forms through a barrierless process, and (iii) the thermodynamic instability of the tautomers with respect to the canonical base pairs. Through similar reasoning, we also deduce that proton transfer in the A:T base pair does not contribute to single point mutations in DNA.



中文翻译:

碱基对互变异构对水性DNA单点突变的影响

研究了碱基对氢键质子转移与环境温度和压力下水性 DNA 中自发单点突变率之间的关系。通过使用基于集合的多尺度计算建模方法,计算出溶剂化 DNA 十二聚体中 A:T 和 G:C 碱基对的质子转移的统计稳健率。在同一碱基对内观察到几种不同的质子转移途径。结果表明,在 G:C 中,双质子转移互变异构体是首选​​,而单质子转移过程在 A:T 中更受欢迎。双质子转移速率系数的报告范围与最近的实验数据一致。尽管来自 A:T 的单质子转移产物的出现率高出大约 1000 倍,从观察上看,在广泛的生物体中存在对 G:C 到 A:T 突变的偏见。我们推断 G:C 碱基对之间的双质子转移反应对这种偏差的贡献可以忽略不计,原因如下:(i) G*:C* 互变异构体的最大半衰期在皮秒范围内,其中显着小于 DNA 在复制过程中解开所需的毫秒数,(ii) 统计上,大多数 G*:C* 互变异构体通过无障碍过程恢复到其规范形式,以及 (iii) 互变异构体的热力学不稳定性关于规范碱基对。通过类似的推理,我们还推断出 A:T 碱基对中的质子转移不会导致 DNA 中的单点突变。我们推断 G:C 碱基对之间的双质子转移反应对这种偏差的贡献可以忽略不计,原因如下:(i) G*:C* 互变异构体的最大半衰期在皮秒范围内,其中显着小于 DNA 在复制过程中解开所需的毫秒数,(ii) 统计上,大多数 G*:C* 互变异构体通过无障碍过程恢复到其规范形式,以及 (iii) 互变异构体的热力学不稳定性关于规范碱基对。通过类似的推理,我们还推断出 A:T 碱基对中的质子转移不会导致 DNA 中的单点突变。我们推断 G:C 碱基对之间的双质子转移反应对这种偏差的贡献可以忽略不计,原因如下:(i) G*:C* 互变异构体的最大半衰期在皮秒范围内,其中显着小于 DNA 在复制过程中解开所需的毫秒数,(ii) 统计上,大多数 G*:C* 互变异构体通过无障碍过程恢复到其规范形式,以及 (iii) 互变异构体的热力学不稳定性关于规范碱基对。通过类似的推理,我们还推断出 A:T 碱基对中的质子转移不会导致 DNA 中的单点突变。C* 互变异构体在皮秒范围内,这明显小于 DNA 在复制过程中展开所需的毫秒数,(ii) 从统计上讲,大多数 G*:C* 互变异构体通过无障碍过程恢复到其规范形式,以及 (iii) 互变异构体相对于规范碱基对的热力学不稳定性。通过类似的推理,我们还推断出 A:T 碱基对中的质子转移不会导致 DNA 中的单点突变。C* 互变异构体在皮秒范围内,这明显小于 DNA 在复制过程中展开所需的毫秒数,(ii) 从统计上讲,大多数 G*:C* 互变异构体通过无障碍过程恢复到其规范形式,以及 (iii) 互变异构体相对于规范碱基对的热力学不稳定性。通过类似的推理,我们还推断出 A:T 碱基对中的质子转移不会导致 DNA 中的单点突变。

更新日期:2020-10-16
down
wechat
bug