当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-gigayear White Dwarf Cooling Delays from Clustering-enhanced Gravitational Sedimentation
The Astrophysical Journal ( IF 4.9 ) Pub Date : 2020-10-15 , DOI: 10.3847/1538-4357/abb5a5
Evan B. Bauer 1 , Josiah Schwab 2 , Lars Bildsten 1, 3 , Sihao Cheng 4
Affiliation  

Cooling white dwarfs (WDs) can yield accurate ages when theoretical cooling models fully account for the physics of the dense plasma of WD interiors. We use MESA to investigate cooling models for a set of massive and ultra-massive WDs (0.9-1.3 $M_\odot$) for which previous models fail to match kinematic age indicators based on Gaia DR2. We find that the WDs in this population can be explained as C/O cores experiencing unexpectedly rapid $^{22}$Ne sedimentation in the strongly liquid interior just prior to crystallization. We propose that this rapid sedimentation is due to the formation of solid clusters of $^{22}$Ne in the liquid C/O background plasma. We show that these heavier solid clusters sink faster than individual $^{22}$Ne ions and enhance the sedimentation heating rate enough to dramatically slow WD cooling. MESA models including our prescription for cluster formation and sedimentation experience cooling delays of $\approx$4 Gyr on the WD Q branch, alleviating tension between cooling ages and kinematic ages. This same model then predicts cooling delays coinciding with crystallization of 6 Gyr or more in lower mass WDs (0.6-0.8 $M_\odot$). Such delays are compatible with, and perhaps required by, observations of WD populations in the local 100 pc WD sample and the open cluster NGC 6791. These results motivate new investigations of the physics of strongly coupled C/O/Ne plasma mixtures in the strongly liquid state near crystallization and tests through comparisons with observed WD cooling.

中文翻译:

星团增强的引力沉积导致白矮星冷却延迟数千兆年

当理论冷却模型充分考虑白矮星内部密集等离子体的物理特性时,冷却白矮星 (WD) 可以产生准确的年龄。我们使用 MESA 来研究一组大质量和超大质量 WD (0.9-1.3 $M_\odot$) 的冷却模型,之前的模型无法匹配基于 Gaia DR2 的运动学年龄指标。我们发现该群体中的 WD 可以解释为 C/O 核在结晶之前在强液体内部经历出乎意料的快速 $^{22}$Ne 沉降。我们认为这种快速沉降是由于在液态 C/O 背景等离子体中形成了 $^{22}$Ne 固体簇。我们表明,这些较重的固体团簇比单个 $^{22}$Ne 离子下沉得更快,并且沉积加热速率的提高足以显着减缓 WD 冷却。MESA 模型(包括我们对集群形成和沉积的处方)在 WD Q 分支上经历了大约 4 Gyr 的冷却延迟,从而缓解了冷却年龄和运动年龄之间的紧张关系。然后,该相同模型预测冷却延迟与较低质量 WD (0.6-0.8 $M_\odot$) 中 6 Gyr 或更多的结晶相一致。这种延迟与对局部 100 pc WD 样本和疏散星团 NGC 6791 中的 WD 群体的观察相兼容,并且可能需要这些结果。这些结果激发了对强耦合 C/O/Ne 等离子体混合物物理的新研究。结晶附近的液态,并通过与观察到的 WD 冷却进行比较进行测试。缓解冷却年龄和运动年龄之间的紧张关系。然后,该相同模型预测冷却延迟与较低质量 WD (0.6-0.8 $M_\odot$) 中 6 Gyr 或更多的结晶相一致。这种延迟与对局部 100 pc WD 样本和疏散星团 NGC 6791 中的 WD 群体的观察相容,并且可能需要。结晶附近的液态,并通过与观察到的 WD 冷却进行比较进行测试。缓解冷却年龄和运动年龄之间的紧张关系。然后,该相同模型预测冷却延迟与较低质量 WD (0.6-0.8 $M_\odot$) 中 6 Gyr 或更多的结晶相一致。这种延迟与对局部 100 pc WD 样本和疏散星团 NGC 6791 中的 WD 群体的观察相兼容,并且可能需要这些结果。这些结果激发了对强耦合 C/O/Ne 等离子体混合物物理的新研究。结晶附近的液态,并通过与观察到的 WD 冷却进行比较进行测试。
更新日期:2020-10-15
down
wechat
bug