当前位置: X-MOL 学术Chin. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Phase Diagram of Cu4–x Zn x (OH)6FBr Studied by Neutron-Diffraction and μSR Techniques
Chinese Physics Letters ( IF 3.5 ) Pub Date : 2020-10-01 , DOI: 10.1088/0256-307x/37/10/107503
Yuan Wei 1, 2 , Xiaoyan Ma 1, 2 , Zili Feng 1, 3 , Devashibhai Adroja 4, 5 , Adrian Hillier 4 , Pabitra Biswas 4 , Anatoliy Senyshyn 6 , Andreas Hoser 7 , Jia-Wei Mei 8 , Zi Yang Meng 1, 9, 10 , Huiqian Luo 1, 10 , Youguo Shi 1, 10 , Shiliang Li 1, 2, 10
Affiliation  

We have systematically studied the magnetic properties of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr by the neutron diffraction and muon spin rotation and relaxation ($\mu$SR) techniques. Neutron-diffraction measurements suggest that the long-range magnetic order and the orthorhombic nuclear structure in the $x$ = 0 sample can persist up to $x$ = 0.23 and 0.43, respectively. The temperature dependence of the zero-field (ZF) $\mu$SR spectra provide two characteristic temperatures, $T_{A0}$ and $T_{\lambda}$. Comparison between $T_{A0}$ and $T_M$ from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to $x$ = 0.82. On the other hand, the doping level where $T_{\lambda}$ becomes zero is about 0.66, which is much higher than threshold of the long-range order, i.e., $\sim$ 0.4. Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above $x$ = 0.66 with the perfect kagome planes.

中文翻译:

通过中子衍射和 μSR 技术研究的 Cu4-x Zn x (OH)6FBr 的磁相图

我们通过中子衍射和μ子自旋旋转和弛豫($\mu$SR)技术系统地研究了Cu$_{4-x}$Zn$_x$(OH)$_6$FBr的磁性。中子衍射测量表明,$x$ = 0 样品中的长程磁序和正交核结构可以分别持续到 $x$ = 0.23 和 0.43。零场 (ZF) $\mu$SR 光谱的温度依赖性提供了两个特征温度,$T_{A0}$ 和 $T_{\lambda}$。$T_{A0}$ 和先前报告的磁化率测量值的 $T_M$ 之间的比较表明,前者来自短程层间自旋簇,其持续时间高达 $x$ = 0.82。另一方面,$T_{\lambda}$ 变为零的掺杂水平约为 0.66,远高于长程有序的阈值,即,$\sim$ 0.4。我们的结果表明,核结构的变化可能会改变 kagome 层的自旋动力学,并且在 $x$ = 0.66 以上可能存在有间隙的量子自旋液体状态,具有完美的 kagome 平面。
更新日期:2020-10-01
down
wechat
bug