当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enriched Galerkin Discretization for Modeling Poroelasticity and Permeability Alteration in Heterogeneous Porous Media
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-10-13 , DOI: arxiv-2010.06653
T. Kadeethum and H. M. Nick and S. Lee and F. Ballarin

Accurate simulation of the coupled fluid flow and solid deformation in porous media is challenging, especially when the media permeability and storativity are heterogeneous. We apply the enriched Galerkin (EG) finite element method for the Biot's system. Block structure used to compose the enriched space and linearization and iterative schemes employed to solve the coupled media permeability alteration are illustrated. The open-source platform used to build the block structure is presented and illustrate that it helps the enriched Galerkin method easily adaptable to any existing discontinuous Galerkin codes. Subsequently, we compare the EG method with the classic continuous Galerkin (CG) and discontinuous Galerkin (DG) finite element methods. While these methods provide similar approximations for the pressure solution of Terzaghi's one-dimensional consolidation, the CG method produces spurious oscillations in fluid pressure and volumetric strain solutions at material interfaces that have permeability contrast and does not conserve mass locally. As a result, the flux approximation of the CG method is significantly different from the one of EG and DG methods, especially for the soft materials. The difference of flux approximation between EG and DG methods is insignificant; still, the EG method demands approximately two and three times fewer degrees of freedom than the DG method for two- and three-dimensional geometries, respectively. Lastly, we illustrate that the EG method produces accurate results even for much coarser meshes.

中文翻译:

用于模拟非均质多孔介质中的孔隙弹性和渗透率变化的丰富 Galerkin 离散化

多孔介质中耦合流体流动和固体变形的准确模拟具有挑战性,尤其是当介质渗透率和储量不均匀时。我们将丰富的 Galerkin (EG) 有限元方法应用于 Biot 系统。说明了用于组成丰富空间的块结构以及用于解决耦合介质渗透率变化的线性化和迭代方案。展示了用于构建块结构的开源平台,并说明它有助于丰富的 Galerkin 方法轻松适应任何现有的不连续 Galerkin 代码。随后,我们将 EG 方法与经典的连续伽辽金 (CG) 和不连续伽辽金 (DG) 有限元方法进行了比较。虽然这些方法为 Terzaghi' 的压力解提供了类似的近似值 对于一维固结,CG 方法在具有渗透率对比且不局部守恒质量的材料界面处产生流体压力和体积应变解的虚假振荡。因此,CG 方法的通量近似与 EG 和 DG 方法之一显着不同,尤其是对于软材料。EG 和 DG 方法的通量近似差异不显着;尽管如此,对于二维和三维几何图形,EG 方法需要的自由度分别比 DG 方法少约 2 倍和 3 倍。最后,我们说明 EG 方法即使对于更粗糙的网格也能产生准确的结果。CG 方法在具有渗透率对比且不局部守恒质量的材料界面处产生流体压力和体积应变解的虚假振荡。因此,CG 方法的通量近似与 EG 和 DG 方法之一显着不同,尤其是对于软材料。EG 和 DG 方法的通量近似差异不显着;尽管如此,对于二维和三维几何图形,EG 方法需要的自由度分别比 DG 方法少约 2 倍和 3 倍。最后,我们说明 EG 方法即使对于更粗糙的网格也能产生准确的结果。CG 方法在具有渗透率对比且不局部守恒质量的材料界面处产生流体压力和体积应变解的虚假振荡。因此,CG 方法的通量近似与 EG 和 DG 方法之一显着不同,尤其是对于软材料。EG 和 DG 方法的通量近似差异不显着;尽管如此,对于二维和三维几何图形,EG 方法需要的自由度分别比 DG 方法少约 2 倍和 3 倍。最后,我们说明 EG 方法即使对于更粗糙的网格也能产生准确的结果。尤其是对于柔软的材料。EG 和 DG 方法的通量近似差异不显着;尽管如此,对于二维和三维几何图形,EG 方法需要的自由度分别比 DG 方法少约 2 倍和 3 倍。最后,我们说明 EG 方法即使对于更粗糙的网格也能产生准确的结果。尤其是对于柔软的材料。EG 和 DG 方法的通量近似差异不显着;尽管如此,对于二维和三维几何图形,EG 方法需要的自由度分别比 DG 方法少约 2 倍和 3 倍。最后,我们说明 EG 方法即使对于更粗糙的网格也能产生准确的结果。
更新日期:2020-10-15
down
wechat
bug