当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of a New Sea Ice Thermodynamic Formulation in the CESM2 Sea Ice Component
Journal of Advances in Modeling Earth Systems ( IF 6.8 ) Pub Date : 2020-10-14 , DOI: 10.1029/2020ms002154
David A. Bailey 1 , Marika M. Holland 1 , Alice K. DuVivier 1 , Elizabeth C. Hunke 2 , Adrian K. Turner 2
Affiliation  

The sea ice component of the Community Earth System Model version 2 (CESM2) contains new “mushy‐layer” physics that simulates prognostic salinity in the sea ice, with consequent modifications to sea ice thermodynamics and the treatment of melt ponds. The changes to the sea ice model and their influence on coupled model simulations are described here. Two simulations were performed to assess the changes in the vertical thermodynamics formulation with prognostic salinity compared to a constant salinity profile. Inclusion of the mushy layer thermodynamics of Turner et al. (2013, https://doi.org/10.1002/jgrc.20171) in a fully coupled Earth system model produces thicker and more extensive sea ice in the Arctic, with relatively unchanged sea ice in the Antarctic compared to simulations using a constant salinity profile. While this is consistent with the findings of uncoupled ice‐ocean model studies, the role of the frazil and congelation growth is more important in fully coupled simulations. Melt pond drainage is also an important contribution to simulated ice thickness differences as also found in the uncoupled simulations of Turner and Hunke (2015; https://doi.org/10.1002/2014JC010358). However, it is an interaction of the ponds and the snow fraction that impacts the surface albedo and hence the top melt. The changes in the thermodynamics and resulting ice state modify the ice‐ocean‐atmosphere fluxes with impacts on the atmosphere and ocean states, particularly temperature.

中文翻译:

CESM2海冰组件中新海冰热力学公式的影响

社区地球系统模型版本2(CESM2)的海冰组件包含新的“糊状层”物理学,可模拟海冰中的盐度预测值,从而对海冰热力学和融化池的处理进行了修改。这里描述了海冰模型的变化及其对耦合模型仿真的影响。进行了两个模拟,以评估垂直热力学公式在盐度不变的情况下与预盐度的变化。包括特纳等人的糊状层热力学。(2013,https://doi.org/10.1002/jgrc.20171)在完全耦合的地球系统模型中,与使用恒定盐度的模拟相比,北极地区的北极海冰更厚,更广泛,而南极海冰相对不变个人资料。尽管这与非耦合海洋模型研究的结果一致,但在完全耦合模拟中,巴西利亚和胶结生长的作用更为重要。融化池排水也是模拟冰厚差异的重要贡献,正如在Turner和Hunke(2015; https://doi.org/10.1002/2014JC010358)的非耦合模拟中也发现的那样。然而,正是池塘和积雪的相互作用影响了地表反照率,进而影响了顶部融化。热力学的变化和由此产生的冰状态改变了冰洋大气通量,从而影响了大气和海洋状态,特别是温度。融化池排水也是模拟冰厚差异的重要贡献,正如在Turner和Hunke(2015; https://doi.org/10.1002/2014JC010358)的非耦合模拟中也发现的那样。然而,正是池塘和积雪的相互作用影响了地表反照率,进而影响了顶部融化。热力学的变化和由此产生的冰状态改变了冰洋大气通量,从而影响了大气和海洋状态,特别是温度。融化池排水也是模拟冰厚差异的重要贡献,正如在Turner和Hunke(2015; https://doi.org/10.1002/2014JC010358)的非耦合模拟中也发现的那样。然而,正是池塘和积雪的相互作用影响了地表反照率,进而影响了顶部融化。热力学的变化和由此产生的冰状态改变了冰洋大气通量,从而影响了大气和海洋状态,特别是温度。
更新日期:2020-10-30
down
wechat
bug