当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Bi-space Interactive Cooperative Coevolutionary algorithm for large scale black-box optimization
Applied Soft Computing ( IF 5.472 ) Pub Date : 2020-10-15 , DOI: 10.1016/j.asoc.2020.106798
Hongwei Ge; Mingde Zhao; Yaqing Hou; Zhang Kai; Liang Sun; Guozhen Tan; Qiang Zhang; C.L. Philip Chen

Large scale black-box optimization problems arise in many fields of science and engineering, and many of existing algorithms for these problems still suffer from the “curse of dimensionality”. This paper proposes a generalized framework of Bi-space Interactive Cooperative Coevolutionary Algorithm (BICCA) with evolutions in two spaces. In the pattern space, the interacting patterns of variables are continuously excavated for the evolution of the groups for cooperative coevolution. In the search space, cooperative coevolution and global search are carried out adaptively to get better fitness. By adopting evolutions and interactions within two spaces, patterns evolve to provide better groupings while individuals evolve to reach better fitness. The problem decomposition is conducted along the optimization process, and no extra fitness evaluations are needed for problem decomposition. Experiments on widely-used benchmarks show that BICCA obtains competitive performance on high-dimensional optimization problems with different levels of dimensionality up to 10000.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug