当前位置: X-MOL 学术Ann. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ground subspaces of topological phases of matter as error correcting codes
Annals of Physics ( IF 3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.aop.2020.168318
Yang Qiu , Zhenghan Wang

Topological quantum computing is believed to be inherently fault-tolerant. One mathematical justification would be to prove that ground subspaces or ground state manifolds of topological phases of matter behave as error correction codes with macroscopic distance. While this is widely assumed and used as a definition of topological phases of matter in the physics literature, besides the doubled abelian anyon models in Kitaev's seminal paper, no non-abelian models are proven to be so mathematically until recently. Cui et al extended the theorem from doubled abelian anyon models to all Kitaev models based on any finite group. Those proofs are very explicit using detailed knowledge of the Hamiltonians, so it seems to be hard to further extend the proof to cover other models such as the Levin-Wen. We pursue a totally different approach based on topological quantum field theories (TQFTs), and prove that a lattice implementation of the disk axiom and annulus axiom in TQFTs as essentially the equivalence of TQO1 and TQO2 conditions. We confirm the error correcting properties of ground subspaces for topological lattice Hamiltonian schemas of the Levin-Wen model and Dijkgraaf-Witten TQFTs by providing a lattice version of the disk axiom and annulus of the underlying TQFTs. The error correcting property of ground subspaces is also shared by gapped fracton models such as the Haah codes. We propose to characterize topological phases of matter via error correcting properties, and refer to gapped fracton models as lax-topological.

中文翻译:

物质拓扑相的基本子空间作为纠错码

拓扑量子计算被认为具有固有的容错性。一种数学证明是证明物质拓扑相的地面子空间或基态流形表现为具有宏观距离的纠错码。虽然这在物理学文献中被广泛假设并用作物质拓扑相的定义,但除了 Kitaev 开创性论文中的双阿贝尔任意子模型之外,直到最近,没有任何非阿贝尔模型在数学上被证明如此。Cui 等人将定理从二重阿贝尔任意子模型扩展到基于任意有限群的所有 Kitaev 模型。这些证明使用哈密顿量的详细知识非常明确,因此似乎很难进一步扩展证明以涵盖其他模型,例如 Levin-Wen。我们追求基于拓扑量子场论 (TQFT) 的完全不同的方法,并证明 TQFT 中盘公理和环公理的格子实现本质上是 TQO1 和 TQO2 条件的等价。我们通过提供底层 TQFT 的圆盘公理和环的晶格版本,确认了 Levin-Wen 模型和 Dijkgraaf-Witten TQFT 的拓扑晶格哈密顿模式的地面子空间的纠错特性。地面子空间的纠错特性也为有间隙的分形模型(例如 Haah 码)所共有。我们建议通过纠错特性来表征物质的拓扑相,并将间隙分形模型称为松散拓扑。并证明 TQFT 中盘公理和环公理的格子实现本质上是 TQO1 和 TQO2 条件的等价。我们通过提供底层 TQFT 的圆盘公理和环的晶格版本,确认了 Levin-Wen 模型和 Dijkgraaf-Witten TQFT 的拓扑晶格哈密顿模式的地面子空间的纠错特性。地面子空间的纠错特性也为有间隙的分形模型(例如 Haah 码)所共有。我们建议通过纠错特性来表征物质的拓扑相,并将间隙分形模型称为松散拓扑。并证明 TQFT 中盘公理和环公理的格子实现本质上是 TQO1 和 TQO2 条件的等价。我们通过提供底层 TQFT 的圆盘公理和环的晶格版本,确认了 Levin-Wen 模型和 Dijkgraaf-Witten TQFT 的拓扑晶格哈密顿模式的地面子空间的纠错特性。地面子空间的纠错特性也为有间隙的分形模型(例如 Haah 码)所共有。我们建议通过纠错特性来表征物质的拓扑相,并将间隙分形模型称为松散拓扑。我们通过提供底层 TQFT 的圆盘公理和环的晶格版本,确认了 Levin-Wen 模型和 Dijkgraaf-Witten TQFT 的拓扑晶格哈密顿模式的地面子空间的纠错特性。地面子空间的纠错特性也为有间隙的分形模型(例如 Haah 码)所共有。我们建议通过纠错特性来表征物质的拓扑相,并将间隙分形模型称为松散拓扑。我们通过提供底层 TQFT 的圆盘公理和环的晶格版本,确认了 Levin-Wen 模型和 Dijkgraaf-Witten TQFT 的拓扑晶格哈密顿模式的地面子空间的纠错特性。地面子空间的纠错特性也为有间隙的分形模型(例如 Haah 码)所共有。我们建议通过纠错特性来表征物质的拓扑相,并将间隙分形模型称为松散拓扑。
更新日期:2020-11-01
down
wechat
bug