当前位置: X-MOL 学术J. Appl. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of InSAR tropospheric signal correction methods
Journal of Applied Remote Sensing ( IF 1.7 ) Pub Date : 2020-10-14 , DOI: 10.1117/1.jrs.14.044503
Saeid Haji-Aghajany 1 , Yazdan Amerian 1
Affiliation  

Abstract. Tropospheric signals are considered as one of the most important performance limitations to compute the deformations caused by earthquake, subsidence, volcano, and so on using interferometric synthetic aperture radar (InSAR) technique. Various correction methods have been proposed to reduce the effect of these signals in displacement fields in previous research works. Different types of correction methods are used to estimate the tropospheric signal on InSAR observations. For this purpose, meteorological data derived from ERA-Interim (ERA-I) data, Weather Research and Forecasting (WRF) model, and Advanced Synthetic Aperture Radar/ENVISAT acquisitions are used. ERA-I reanalysis data and a locally run WRF model are also used to compute the tropospheric corrections with integral of the air refractivity method, which is called integration method. Also, the ability of ray tracing techniques to reduce the effect of the tropospheric signal in unwrapped interferogram is compared with integration method. To carry out a comprehensive study, the effects of correction methods are studied in two different areas. The results of the ray tracing methods have a significant difference with the results obtained from integration method and are more efficient when the weather condition between two satellite acquisitions is more different. The results show that the three-dimensional ray tracing method can reduce the root-mean-square error of the results up to 4.8 cm compared to the integration methods.

中文翻译:

InSAR对流层信号校正方法的评估

摘要。对流层信号被认为是使用干涉合成孔径雷达 (InSAR) 技术计算地震、沉降、火山等引起的变形的最重要的性能限制之一。在先前的研究工作中,已经提出了各种校正方法来减少这些信号在位移场中的影响。不同类型的校正方法用于估计 InSAR 观测的对流层信号。为此,使用了从 ERA-Interim (ERA-I) 数据、天气研究和预测 (WRF) 模型以及高级合成孔径雷达/ENVISAT 获取的气象数据。ERA-I 再分析数据和本地运行的 WRF 模型也用于计算对流层校正,并使用空气折射率方法的积分,称为积分法。此外,还比较了射线追踪技术在解缠干涉图中减少对流层信号影响的能力与积分方法。为了进行全面的研究,在两个不同的领域研究了校正方法的效果。射线追踪方法的结果与积分方法的结果有显着差异,当两颗卫星捕获的天气条件差异较大时,效率更高。结果表明,与积分方法相比,三维光线追踪方法可以将结果的均方根误差降低到4.8 cm。为了进行全面的研究,在两个不同的领域研究了校正方法的效果。射线追踪方法的结果与积分方法的结果有显着差异,当两颗卫星捕获的天气条件差异较大时,效率更高。结果表明,与积分方法相比,三维光线追踪方法可以将结果的均方根误差降低到4.8 cm。为了进行全面的研究,在两个不同的领域研究了校正方法的效果。射线追踪方法的结果与积分方法的结果有显着差异,当两颗卫星捕获的天气条件差异较大时,效率更高。结果表明,与积分方法相比,三维光线追踪方法可以将结果的均方根误差降低到4.8 cm。
更新日期:2020-10-14
down
wechat
bug