当前位置: X-MOL 学术J. Royal Soc. Interface › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enzyme activities predicted by metabolite concentrations and solvent capacity in the cell
Journal of The Royal Society Interface ( IF 3.9 ) Pub Date : 2020-10-01 , DOI: 10.1098/rsif.2020.0656
Samuel Britton 1, 2 , Mark Alber 1, 2 , William R Cannon 1, 2, 3
Affiliation  

Experimental measurements or computational model predictions of the post-translational regulation of enzymes needed in a metabolic pathway is a difficult problem. Consequently, regulation is mostly known only for well-studied reactions of central metabolism in various model organisms. In this study, we use two approaches to predict enzyme regulation policies and investigate the hypothesis that regulation is driven by the need to maintain the solvent capacity in the cell. The first predictive method uses a statistical thermodynamics and metabolic control theory framework while the second method is performed using a hybrid optimization–reinforcement learning approach. Efficient regulation schemes were learned from experimental data that either agree with theoretical calculations or result in a higher cell fitness using maximum useful work as a metric. As previously hypothesized, regulation is herein shown to control the concentrations of both immediate and downstream product concentrations at physiological levels. Model predictions provide the following two novel general principles: (1) the regulation itself causes the reactions to be much further from equilibrium instead of the common assumption that highly non-equilibrium reactions are the targets for regulation; and (2) the minimal regulation needed to maintain metabolite levels at physiological concentrations maximizes the free energy dissipation rate instead of preserving a specific energy charge. The resulting energy dissipation rate is an emergent property of regulation which may be represented by a high value of the adenylate energy charge. In addition, the predictions demonstrate that the amount of regulation needed can be minimized if it is applied at the beginning or branch point of a pathway, in agreement with common notions. The approach is demonstrated for three pathways in the central metabolism of E. coli (gluconeogenesis, glycolysis-tricarboxylic acid (TCA) and pentose phosphate-TCA) that each require different regulation schemes. It is shown quantitatively that hexokinase, glucose 6-phosphate dehydrogenase and glyceraldehyde phosphate dehydrogenase, all branch points of pathways, play the largest roles in regulating central metabolism.

中文翻译:

由细胞内代谢物浓度和溶剂容量预测的酶活性

代谢途径中所需酶的翻译后调节的实验测量或计算模型预测是一个难题。因此,大多数情况下,只有在各种模式生物中经过充分研究的中枢代谢反应中才知道调节。在这项研究中,我们使用两种方法来预测酶调节策略,并研究调节是由维持细胞中溶剂容量的需要驱动的假设。第一种预测方法使用统计热力学和代谢控制理论框架,而第二种方法使用混合优化-强化学习方法执行。有效的调节方案是从实验数据中学习到的,这些数据要么与理论计算一致,要么使用最大有用功作为指标导致更高的细胞适合度。正如先前假设的那样,本文显示调节可以控制生理水平的直接和下游产品浓度的浓度。模型预测提供了以下两个新颖的一般原则:(1)调节本身导致反应远离平衡,而不是高度非平衡反应是调节目标的普遍假设;(2) 将代谢物水平维持在生理浓度所需的最小调节使自由能耗散率最大化,而不是保持特定的能量电荷。由此产生的能量耗散率是调节的紧急特性,其可以由高值的腺苷酸能量电荷表示。此外,预测表明,如果将其应用于通路的起点或分支点,则所需的调节量可以最小化,这与常见概念一致。该方法在大肠杆菌中枢代谢中的三个途径(糖异生、糖酵解-三羧酸 (TCA) 和戊糖磷酸-TCA)中得到证明,每个途径都需要不同的调节方案。定量表明己糖激酶、葡萄糖6-磷酸脱氢酶和磷酸甘油醛脱氢酶,所有途径的分支点,在调节中枢代谢中发挥最大作用。此外,预测表明,如果将其应用于通路的起点或分支点,则所需的调节量可以最小化,这与常见概念一致。该方法在大肠杆菌中枢代谢中的三个途径(糖异生、糖酵解-三羧酸 (TCA) 和戊糖磷酸-TCA)中得到证明,每个途径都需要不同的调节方案。定量表明己糖激酶、葡萄糖6-磷酸脱氢酶和磷酸甘油醛脱氢酶,所有途径的分支点,在调节中枢代谢中发挥最大作用。此外,预测表明,如果将其应用于通路的起点或分支点,则所需的调节量可以最小化,这与常见概念一致。该方法针对大肠杆菌的中心代谢中的三个途径(糖异生、糖酵解-三羧酸 (TCA) 和戊糖磷酸-TCA)进行了证明,每个途径都需要不同的调节方案。定量表明己糖激酶、葡萄糖6-磷酸脱氢酶和磷酸甘油醛脱氢酶,所有途径的分支点,在调节中枢代谢中发挥最大作用。该方法在大肠杆菌中枢代谢中的三个途径(糖异生、糖酵解-三羧酸 (TCA) 和戊糖磷酸-TCA)中得到证明,每个途径都需要不同的调节方案。定量表明己糖激酶、葡萄糖6-磷酸脱氢酶和磷酸甘油醛脱氢酶,所有途径的分支点,在调节中枢代谢中发挥最大作用。该方法在大肠杆菌中枢代谢中的三个途径(糖异生、糖酵解-三羧酸 (TCA) 和戊糖磷酸-TCA)中得到证明,每个途径都需要不同的调节方案。定量表明己糖激酶、葡萄糖6-磷酸脱氢酶和磷酸甘油醛脱氢酶,所有途径的分支点,在调节中枢代谢中发挥最大作用。
更新日期:2020-10-01
down
wechat
bug