当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band gap engineering of donor–acceptor co-crystals by complementary two-point hydrogen bonding
Materials Chemistry Frontiers ( IF 7 ) Pub Date : 2020-10-14 , DOI: 10.1039/d0qm00500b
Nathan Yee 1, 2, 3 , Afshin Dadvand 1, 2, 3 , Dmitrii F. Perepichka 1, 2, 3
Affiliation  

We report a detailed investigation of a series of new charge-transfer (CT) complexes assembled via a two-point complementary hydrogen bonding (H-bonding) of diindolopyrrole (DIP) electron donors with o-quinone and diazafluorenone acceptors. Unidirectional polarization through the DD⋯AA type H-bonding leads to a dramatic perturbation of electronic levels of the donor and the acceptor. π-Stacking of the H-bonded pairs results in strong charge-transfer (HOMO–LUMO) interactions in their ground state, manifested in low energy optical absorption. Density functional theory (DFT) calculations predict a H-bonding induced rise of the HOMOD (by up to 0.5 eV) and lowering of the LUMOA (by up to 0.7 eV). As a result, the complexes of relatively weak electron donors and acceptor ability exhibit remarkably low optical energy gaps (down to <0.8 eV), that can be tuned by varying the ionization potential and electron affinity of the individual components. Single crystal X-ray analysis for 6 complexes displayed H-bond lengths between 1.9 and 2.3 Å and short π-stacking distances (≥3.2 Å), in line with strong donor–acceptor interactions. Thin-film transistors of such a H-bonded complex, fabricated by vacuum co-sublimation of PhDIP and pyrenetetraone, showed ambipolar charge transport with unusual ‘double dip’ characteristics.

中文翻译:

通过互补的两点氢键进行供体-受体共晶体的带隙工程

我们报告了一系列新的电荷转移(CT)复合物的详细研究,该复合物是通过二吲哚并吡咯(DIP)电子给体与醌和二氮杂芴酮受体的两点互补氢键(H键)组装而成的。通过DD⋯AA型H键的单向极化导致给体和受体电子能级的剧烈扰动。H键对的π堆积会在其基态下导致强烈的电荷转移(HOMO-LUMO)相互作用,表现为低能量的光吸收。密度泛函理论(DFT)计算可预测H键引起的HOMO D的升高(高达0.5 eV)和LUMO A的降低(高达0.7 eV)。结果,相对弱的电子给体和受体能力的配合物表现出非常低的光能隙(低至<0.8 eV),可以通过改变各个组分的电离势和电子亲和力来调节。对6个配合物的单晶X射线分析显示H键长度在1.9和2.3Å之间,并且π堆积距离短(≥3.2Å),这与强的供体-受体相互作用相符。通过PhDIP和pyr四酮的真空共升华制造的这种H键复合物的薄膜晶体管显示出双极性电荷传输,具有异常的“双浸”特性。
更新日期:2020-11-03
down
wechat
bug