当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection
Journal of Advances in Modeling Earth Systems ( IF 6.8 ) Pub Date : 2020-10-14 , DOI: 10.1029/2020ms002161
Ignacio Lopez‐Gomez 1 , Yair Cohen 1 , Jia He 1 , Anna Jaruga 1, 2 , Tapio Schneider 1, 2
Affiliation  

Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered.

中文翻译:

湍流和对流涡扩散扩散通量的广义混合长度闭合

由于其有限的空间分辨率,数值天气预报和气候模型必须依靠参数化来表示大气湍流和对流。历史上,很大程度上独立的方法已被用来表示边界层的湍流和对流,而忽略了亚网格规模的重要相互作用。在这里,我们建立在涡扩散质量通量(EDMF)方案的基础上,该方案以统一的方式表示所有子网格规模的混合,将子网格规模的波动划分为局部扩散混合和相干对流结构的贡献,并允许它们在单个区域内相互作用框架。EDMF方案要求封闭,以在湍流环境和羽流之间进行相互作用,并进行局部混合。湍流动能(TKE)的二阶方程为扩散局部混合闭塞提供了一种成分,而混合长度待参数化。在这里,我们基于从TKE平衡得出的约束条件,提出了一种新的混合长度公式。它在边界层流的所有状态下以相同的物理过程表示局部混合。该配方在各种分辨率和广泛边界层范围内进行了测试,包括稳定分层的边界层,层积顶部的海洋边界层和干对流。与大型涡流模拟(LES)的比较表明,在所有考虑的情况下,具有这种扩散混合参数化的EDMF方案都能准确捕获边界层和云的结构。剩下的混合长度需要参数化。在这里,我们基于从TKE平衡得出的约束条件,提出了一种新的混合长度公式。它在边界层流的所有状态下以相同的物理过程表示局部混合。该配方在各种分辨率和广泛边界层范围内进行了测试,包括稳定分层的边界层,层积顶部的海洋边界层和干对流。与大型涡流模拟(LES)的比较表明,在所有考虑的情况下,具有这种扩散混合参数化的EDMF方案都能准确捕获边界层和云的结构。剩下的混合长度需要参数化。在这里,我们基于从TKE平衡得出的约束条件,提出了一种新的混合长度公式。它在边界层流的所有状态下以相同的物理过程表示局部混合。该配方在各种分辨率和广泛边界层范围内进行了测试,包括稳定分层的边界层,层积顶部的海洋边界层和干对流。与大型涡流模拟(LES)的比较表明,在所有考虑的情况下,具有这种扩散混合参数化的EDMF方案都能准确捕获边界层和云的结构。它在边界层流的所有状态下以相同的物理过程表示局部混合。该配方在各种分辨率和广泛边界层范围内进行了测试,包括稳定分层的边界层,层积顶部的海洋边界层和干对流。与大型涡流模拟(LES)的比较表明,在所有考虑的情况下,具有这种扩散混合参数化的EDMF方案都能准确捕获边界层和云的结构。它在边界层流的所有状态下以相同的物理过程表示局部混合。该配方在各种分辨率和广泛边界层范围内进行了测试,包括稳定分层的边界层,层积顶部的海洋边界层和干对流。与大型涡流模拟(LES)的比较表明,在所有考虑的情况下,具有这种扩散混合参数化的EDMF方案都能准确捕获边界层和云的结构。
更新日期:2020-10-30
down
wechat
bug