Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Drift Chamber detector of the FOOT experiment: Performance analysis and external calibration
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ( IF 1.4 ) Pub Date : 2020-10-14 , DOI: 10.1016/j.nima.2020.164756
Yunsheng Dong , Silvestre Gianluigi , Colombi Sofia , Alexandrov Andrey , Alpat Behcet , Ambrosi Giovanni , Argirò Stefano , Raul Arteche Diaz , Barbanera Mattia , Bartosik Nazar , Belcari Nicola , Bellinzona Elettra , Biondi Silvia , Maria Giuseppina Bisogni , Bruni Graziano , Carra Pietro , Cerello Piergiorgio , Ciarrocchi Esther , Clozza Alberto , Giovanni De Lellis , Alberto Del Guerra , Micol De Simoni , Antonia Di Crescenzo , Benedetto Di Ruzza , Donetti Marco , Durante Marco , Ferrero Veronica , Fiandrini Emanuele , Finck Christian , Fiorina Elisa , Fischetti Marta , Francesconi Marco , Franchini Matteo , Franciosini Gaia , Galati Giuliana , Galli Luca , Gentile Valerio , Giraudo Giuseppe , Hetzel Ronja , Iarocci Enzo , Ionica Maria , Kanxheri Keida , Aafke Christine Kraan , Lante Valeria , Chiara La Tessa , Laurenza Martina , Lauria Adele , Ernesto Lopez Torres , Marafini Michela , Massimi Cristian , Mattei Ilaria , Mengarelli Alberto , Moggi Andrea , Maria Cristina Montesi , Maria Cristina Morone , Morrocchi Matteo , Muraro Silvia , Narici Livio , Pastore Alessandra , Pastrone Nadia , Vincenzo Patera , Pennazio Francesco , Placidi Pisana , Pullia Marco , Raffaelli Fabrizio , Ramello Luciano , Ridolfi Riccardo , Rosso Valeria , Sanelli Claudio , Sarti Alessio , Sartorelli Gabriella , Sato Osamu , Savazzi Simone , Scavarda Lorenzo , Schiavi Angelo , Schuy Christoph , Scifoni Emanuele , Sciubba Adalberto , Sécher Alexandre , Selvi Marco , Sitta Mario , Spighi Roberto , Spiriti Eleuterio , Sportelli Giancarlo , Stahl Achim , Tomassini Sandro , Toppi Marco , Traini Giacomo , Valeri Tioukov , Serena Marta Valle , Marie Vanstalle , Mauro Villa , Weber Ulrich , Zoccoli Antonio , Giuseppe Battistoni , Leonello Servoli , Francesco Tommasino

The study that we present is part of the preparation work for the setup of the FOOT (FragmentatiOn Of Target) experiment whose main goal is the measurement of the double differential cross sections of fragments produced in nuclear interactions of particles with energies relevant for particle therapy. The present work is focused on the characterization of the gas-filled drift chamber detector composed of 36 sensitive cells, distributed over two perpendicular views. Each view consists of six consecutive and staggered layers with three cells per layer. We investigated the detector efficiency and we performed an external calibration of the space–time relations at the level of single cells. This information was then used to evaluate the drift chamber resolution. An external tracking system realized with microstrip silicon detectors was adopted to have a track measurement independent on the drift chamber. The characterization was performed with a proton beam at the energies of 228 and 80 MeV. The overall hit detection efficiency of the drift chamber has been found to be 0.929±0.008, independent on the proton beam energy. The spatial resolution in the central part of the cell is about 150±10 μ m and 300±10 μ m and the corresponding detector angular resolution has been measured to be 1.62±0.16 mrad and 2.1±0.4 mrad for the higher and lower beam energies, respectively. In addition, the best value on the intrinsic drift chamber resolution has been evaluated to be in the range 60100 μ m. In the framework of the FOOT experiment, the drift chamber will be adopted in the pre-target region, and will be exploited to measure the projectile direction and position, as well as for the identification of pre-target fragmentation events.



中文翻译:

FOOT实验的漂移室检测器:性能分析和外部校准

我们目前的研究是FOOT(目标碎片)实验建立准备工作的一部分,该实验的主要目的是测量粒子与核治疗相关的能量与核的相互作用中产生的碎片的双微分截面。目前的工作集中在由36个敏感单元组成的充气式漂移室检测器的特性分析中,这些检测器分布在两个垂直视图上。每个视图均包含六个连续且交错的层,每层三个单元。我们研究了探测器的效率,并在单细胞水平上对时空关系进行了外部校准。然后,此信息用于评估漂移室分辨率。采用由微带硅探测器实现的外部跟踪系统,可以独立于漂移室进行跟踪测量。用质子束以228和80 MeV的能量进行表征。发现漂移室的总命中检测效率为0929±0008,独立于质子束能量。单元中央部分的空间分辨率约为150±10 μ m和 300±10 μ m和相应的探测器角分辨率已测量为 1个62±016 mrad和 21个±04mrad分别代表较高和较低的光束能量。此外,本征漂移室分辨率的最佳值已评估为在60-100 μ米 在FOOT实验的框架中,漂移室将被用于目标前区域,并将被用于测量弹丸的方向和位置,以及识别目标前碎片事件。

更新日期:2020-10-17
down
wechat
bug