当前位置: X-MOL 学术Meccanica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An electrostatically actuated microsensor for determination of micropolar fluid physical properties
Meccanica ( IF 2.7 ) Pub Date : 2020-10-14 , DOI: 10.1007/s11012-020-01242-x
Mina Ghanbari , Ghader Rezazadeh

Micropolar fluids as complex non-Newtonian fluids admittedly have numerous applications in various fields, especially in medicine. Blood as a micropolar fluid plays an important role in regulating the body’s system and maintaining homeostasis. Physical properties of micropolar fluids, especially their viscosity, affect their rheological behavior significantly. Therefore, measurement of viscosity of these complex fluids especially human blood seems very necessary as it is considered a key parameter in the diagnosis and treatment of several diseases. In this paper, a new comb-drive microsensor for estimation of physical properties of micropolar fluids is presented. Driving and sensing combs, a sensing plate attached to the shuttle of the resonator form the structure of the electrostatic sensor. The nonlinear dynamic behavior of the sensor due to the presence of the electrostatic force has been investigated to obtain the limitations of the linear behavior of the structure. It has been shown that calculating the resonance frequency and resonance amplitude variations of the lumped dynamic model of the sensor arising from damping and inertial effects of the fluid can lead to the determination of the physical properties of a micropolar fluid. The effects of the geometrical parameters of the sensor and the applied exciting voltage on the performance of the sensor have also been studied.

中文翻译:

一种用于测定微极性流体物理特性的静电驱动微传感器

微极流体作为复杂的非牛顿流体无疑在各个领域都有许多应用,尤其是在医学领域。血液作为一种微极性流体,在调节人体系统和维持体内平衡方面起着重要作用。微极性流体的物理特性,尤其是它们的粘度,会显着影响其流变行为。因此,测量这些复杂流体,尤其是人体血液的粘度似乎非常必要,因为它被认为是多种疾病诊断和治疗的关键参数。在本文中,提出了一种用于估计微极流体物理特性的新型梳状驱动微传感器。驱动和感应梳,附在谐振器梭子上的感应板构成了静电传感器的结构。由于静电力的存在,传感器的非线性动态行为已经被研究,以获得结构线性行为的局限性。已经表明,计算由流体的阻尼和惯性效应引起的传感器的集总动态模型的共振频率和共振幅度变化可以导致确定微极流体的物理特性。还研究了传感器的几何参数和施加的激励电压对传感器性能的影响。已经表明,计算由流体的阻尼和惯性效应引起的传感器的集总动态模型的共振频率和共振幅度变化可以导致确定微极流体的物理特性。还研究了传感器的几何参数和施加的激励电压对传感器性能的影响。已经表明,计算由流体的阻尼和惯性效应引起的传感器的集总动态模型的共振频率和共振幅度变化可以导致确定微极流体的物理特性。还研究了传感器的几何参数和施加的激励电压对传感器性能的影响。
更新日期:2020-10-14
down
wechat
bug