当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Localization of Compact Binary Sources with Second-generation Gravitational-wave Interferometer Networks
The Astrophysical Journal ( IF 4.9 ) Pub Date : 2020-10-13 , DOI: 10.3847/1538-4357/abb373
Chris Pankow , Monica Rizzo , Kaushik Rao , Christopher P L Berry , Vassiliki Kalogera

GW170817 heralded the inauguration of gravitational-wave multimessenger astronomy. However, GW170817 may not be representative of detections in the coming years --- typical gravitational-wave sources will be nearer the detection horizon, have larger localization regions, and when present, will have correspondingly weaker electromagnetic emission. In its design state, the gravitational-wave detector network in the mid-2020s will consist of up to five similar-sensitivity second-generation interferometers. The instantaneous sky-coverage by the full network is nearly isotropic, in contrast to the configuration during the first two observing runs. Along with the coverage of the sky, there are also commensurate increases in the average horizon for a given binary mass. We present a realistic set of localizations for binary neutron stars and neutron star--black hole binaries, incorporating intra-network duty cycles and selection effects on the astrophysical distributions. Based on the assumption of an 80% duty cycle, and that two instruments observe a signal above the detection threshold, we anticipate a median of $28$ sq. deg. for binary neutron stars, and $50$--$120$ sq. deg. for neutron star--black hole (depending on the population assumed). These distributions have a wide spread, and the best localizations, even for networks with fewer instruments, will have localizations of $1$--$10$ sq.\ deg.\ range. The full five instrument network reduces localization regions to a few tens of degrees at worst.

中文翻译:

用第二代引力波干涉仪网络定位紧凑双源

GW170817 预示着引力波多信使天文学的诞生。然而,GW170817 可能不会代表未来几年的探测——典型的引力波源将更接近探测视界,具有更大的定位区域,并且当存在时,将具有相应的较弱的电磁辐射。在其设计状态下,2020 年代中期的引力波探测器网络将由多达五个类似灵敏度的第二代干涉仪组成。与前两次观测运行期间的配置相比,全网络的瞬时天空覆盖几乎是各向同性的。随着天空的覆盖,对于给定的双星质量,平均地平线也有相应的增加。我们为双中子星和中子星——黑洞双星提供了一组现实的定位,结合了网络内占空比和对天体物理分布的选择效应。基于 80% 占空比的假设,并且两个仪器观察到高于检测阈值的信号,我们预计中位数为 28 美元平方度。对于双中子星,和 $50$--$120$ sq. deg。对于中子星——黑洞(取决于假设的人口)。这些分布具有广泛的分布,即使对于仪器较少的网络,最好的本地化也将具有 $1$--$10$ sq.\deg.\ 范围的本地化。完整的五台仪器网络在最坏的情况下将定位区域减少到几十度。结合网络内占空比和对天体物理分布的选择效应。基于 80% 占空比的假设,并且两个仪器观察到高于检测阈值的信号,我们预计中位数为 28 美元平方度。对于双中子星,和 $50$--$120$ sq. deg。对于中子星——黑洞(取决于假设的人口)。这些分布具有广泛的分布,即使对于仪器较少的网络,最好的本地化也将具有 $1$--$10$ sq.\deg.\ 范围的本地化。完整的五台仪器网络在最坏的情况下将定位区域减少到几十度。结合网络内占空比和对天体物理分布的选择效应。基于 80% 占空比的假设,并且两个仪器观察到高于检测阈值的信号,我们预计中位数为 28 美元平方度。对于双中子星,和 $50$--$120$ sq. deg。对于中子星——黑洞(取决于假设的人口)。这些分布具有广泛的分布,即使对于仪器较少的网络,最好的本地化也将具有 $1$--$10$ sq.\deg.\ 范围的本地化。完整的五台仪器网络在最坏的情况下将定位区域减少到几十度。对于中子星——黑洞(取决于假设的人口)。这些分布具有广泛的分布,即使对于仪器较少的网络,最好的本地化也将具有 $1$--$10$ sq.\deg.\ 范围的本地化。完整的五台仪器网络在最坏的情况下将定位区域减少到几十度。对于中子星——黑洞(取决于假设的人口)。这些分布具有广泛的分布,即使对于仪器较少的网络,最好的本地化也将具有 $1$--$10$ sq.\deg.\ 范围的本地化。完整的五台仪器网络在最坏的情况下将定位区域减少到几十度。
更新日期:2020-10-13
down
wechat
bug