当前位置: X-MOL 学术Spectrosc. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Different biochars as microbial immobilization substrates for efficient copper II removal
Spectroscopy Letters ( IF 1.7 ) Pub Date : 2020-10-13 , DOI: 10.1080/00387010.2020.1824196
Jiang Huang 1, 2 , Jihong Wang 2 , Shuhua Wang 2 , Shiwei Guo 3
Affiliation  

Abstract Immobilization of microorganisms is a widely used strategy to effectively degrade copper II pollution. Microorganisms can be immobilized in synthetic or natural substrates. In this study, different parts of dried corn (root, stalk, leaf, and cob) were used to immobilize microorganism cells and to explore the potential of the carrier to mitigate copper II pollution. Different substrates were pyrolyzed at different temperatures and the obtained biochar was immobilized by Stenotrophomonas maltophilia. The structural characteristics and properties of the biochars were determined using scanning electron microscopy, X-ray diffractometer, energy dispersive spectrometry, and infrared spectrometry and the copper II removal mechanism by the biochar-microbial carriers were analyzed. Corn stalk biochar pyrolyzed at 250 °C had the best pore structure and the best supporting effect on microorganisms; the biochar-microbial carrier also had the strongest copper II removal ability. The control experiment showed that the carrier removal mechanism is composed of biochar adsorption and microbial degradation. Preparation at different conditions will also affect the removal performance of the carrier; when the microorganism inoculation amount is 10%, the immobilization time is 30 hours, the biochar diameter is 0.147–0.074 mm, and the immobilized carrier has the best performance. The precise screening of waste substrates resulted in the preparation of more efficient carriers, which enhanced the removal of copper II while improving waste utilization.

中文翻译:

不同生物炭作为微生物固定底物有效去除铜 II

摘要 微生物固定化是一种广泛使用的有效降解铜II污染的策略。微生物可以固定在合成或天然基质中。在这项研究中,干玉米的不同部分(根、茎、叶和穗轴)用于固定微生物细胞并探索载体减轻铜 II 污染的潜力。不同的底物在不同的温度下热解,得到的生物炭被嗜麦芽窄食单胞菌固定。采用扫描电镜、X射线衍射仪、能谱仪和红外光谱仪对生物炭的结构特征和性质进行了测定,并分析了生物炭-微生物载体对铜II的去除机理。250℃热解玉米秸秆生物炭孔隙结构最好,对微生物的支持效果最好;biochar-微生物载体也具有最强的铜II去除能力。对照实验表明载体去除机制由生物炭吸附和微生物降解组成。不同条件下的制备也会影响载体的去除性能;当微生物接种量为10%时,固定化时间为30小时,生物炭直径为0.147-0.074 mm,固定化载体性能最佳。对废物底物的精确筛选导致制备更有效的载体,从而在提高废物利用率的同时增强了铜 II 的去除。biochar-微生物载体也具有最强的铜II去除能力。对照实验表明载体去除机制由生物炭吸附和微生物降解组成。不同条件下的制备也会影响载体的去除性能;当微生物接种量为10%时,固定化时间为30小时,生物炭直径为0.147-0.074 mm,固定化载体性能最佳。对废物底物的精确筛选导致制备了更有效的载体,从而在提高废物利用率的同时增强了铜 II 的去除。biochar-微生物载体也具有最强的铜II去除能力。对照实验表明载体去除机制由生物炭吸附和微生物降解组成。不同条件下的制备也会影响载体的去除性能;当微生物接种量为10%时,固定化时间为30小时,生物炭直径为0.147-0.074 mm,固定化载体性能最佳。对废物底物的精确筛选导致制备了更有效的载体,从而在提高废物利用率的同时增强了铜 II 的去除。不同条件下的制备也会影响载体的去除性能;当微生物接种量为10%时,固定化时间为30小时,生物炭直径为0.147-0.074 mm,固定化载体性能最佳。对废物底物的精确筛选导致制备更有效的载体,从而在提高废物利用率的同时增强了铜 II 的去除。不同条件下的制备也会影响载体的去除性能;当微生物接种量为10%时,固定化时间为30小时,生物炭直径为0.147-0.074 mm,固定化载体性能最佳。对废物底物的精确筛选导致制备更有效的载体,从而在提高废物利用率的同时增强了铜 II 的去除。
更新日期:2020-10-13
down
wechat
bug