当前位置: X-MOL 学术Int. J. Refrig. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of hysteresis on caloric cooling performance
International Journal of Refrigeration ( IF 3.9 ) Pub Date : 2020-10-13 , DOI: 10.1016/j.ijrefrig.2020.10.012
M. Masche , L. Ianniciello , J. Tušek , K. Engelbrecht

Caloric cooling relies on reversible temperature changes in solids driven by an externally applied field, such as a magnetic field, electric field, uniaxial stress or hydrostatic pressure. Materials exhibiting such a solid-state caloric effect may provide the basis for an alternative to conventional vapor compression technologies. First-order phase transition materials are promising caloric materials, as they yield large reported adiabatic temperature changes compared to second-order phase transition materials, but exhibit hysteresis behavior that leads to possible degradation in the cooling performance. This work quantifies numerically the impact of hysteresis on the performance of a cooling cycle using different modeled caloric materials and a regenerator with a fixed geometry. A previously developed 1D active regenerator model has been used with an additional hysteresis term to predict how modeled materials with a range of realistic hysteresis values affect the cooling performance. The performance is quantified in terms of cooling power, coefficient of performance (COP), and second-law efficiency for a range of operating conditions. The model shows that hysteresis reduces efficiency, with COP falling by up to 50% as the hysteresis entropy generation (qhys) increases from 0.5% to 1%. At higher working frequencies, the cooling performance decreases further due to increased internal heating of the material. Regenerator beds using materials with lower specific heat and higher isothermal entropy change are less affected by hysteresis. Low specific heat materials show positive COP and cooling power up to 2% of qhys whereas high specific heat materials cannot tolerate more than 0.04% of qhys.



中文翻译:

磁滞对热量冷却性能的影响

热量冷却依赖于由外部施加的磁场(例如磁场,电场,单轴应力或静水压力)驱动的固体中可逆的温度变化。表现出这种固态热效应的材料可以为替代常规蒸气压缩技术提供基础。一阶相变材料是有前途的热量材料,因为与二阶相变材料相比,它们产生的绝热温度变化较大,但具有滞后特性,可能导致冷却性能下降。这项工作使用不同的模拟热量材料和具有固定几何形状的蓄热器,在数值上量化了磁滞对冷却循环性能的影响。先前开发的一维有源再生器模型已与附加的滞后项一起使用,以预测具有一系列实际滞后值的建模材料如何影响冷却性能。在一系列操作条件下,根据冷却功率,性能系数(COP)和第二定律效率来量化性能。该模型显示,磁滞降低了效率,随着磁滞熵的产生,COP下降多达50%(q hys)从0.5%增加到1%。在较高的工作频率下,由于材料内部热量的增加,冷却性能会进一步降低。使用具有较低比热和较高等温熵变的材料的蓄热床受磁滞的影响较小。低比热材料显示出正COP和高达q hyss的2%的冷却能力,而高比热材料则不能承受q hys的0.04%以上。

更新日期:2020-11-27
down
wechat
bug