当前位置: X-MOL 学术Ad Hoc Netw. › 论文详情
On migratable traffic risk estimation in urban sensing: A social sensing based deep transfer network approach
Ad Hoc Networks ( IF 3.643 ) Pub Date : 2020-10-13 , DOI: 10.1016/j.adhoc.2020.102320
Yang Zhang; Daniel Zhang; Dong Wang

This paper focuses on the migratable traffic risk estimation problem in intelligent transportation systems using the social sensing. The goal is to accurately estimate the traffic risk of a target area where the ground truth traffic accident reports are not available by leveraging an estimation model from a source area where such data is available. Two important challenges exist. The first challenge lies in the discrepancy between source and target areas and such discrepancy would prevent a direct application of a model from the source area to the target area. The second challenge lies in the difficulty of identifying all potential features in the migratable traffic risk estimation problem and decide the importance of identified features due to the lack of ground truth labels in the target area. To address these challenges, we develop DeepRisk, a social sensing based migratable traffic risk estimation scheme using deep transfer learning techniques. The evaluation results on a real world dataset in New York City show the DeepRisk significantly outperforms the state-of-the-art baselines in accurately estimating the traffic risk of locations in a city.

更新日期:2020-10-17

 

全部期刊列表>>
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
陆海华
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
胡眆昊
杨财广
廖矿标
试剂库存
down
wechat
bug