当前位置: X-MOL 学术Inorg. Mater. Appl. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Template Synthesis of Calcium Phosphates in Nanoporous Polyolefin Films Obtained via Crazing Mechanism
Inorganic Materials: Applied Research Pub Date : 2020-10-13 , DOI: 10.1134/s207511332005024x
M. A. Moskvina , E. S. Trofimchuk , F. I. Grabovenko , N. I. Nikonorova , A. L. Volynskii

Abstract

An alternative method for production of hybrid organic–inorganic nanocomposites based on porous polyolefin films (isotactic polypropylene, high density polyethylene), deformed via crazing mechanism in physically active media, and calcium phosphates is proposed. Film composite materials of different structure and containing 10–25 wt % of filler are obtained. Particles of calcium hydroxyapatite with a diameter of 15–50 nm are formed in these films at once in the pores of the polymer matrices with the development of a layer, the morphology of which is determined by the structure of the original porous films, and its parameters can be controlled by the reaction conditions. It is found that the composites obtained are characterized by anisotropy of mechanical properties, and the introduction of the calcium phosphate particles results in some increase in the mechanical characteristics of the polymer matrices. High-temperature heating (up to 700°C) of nanocomposites leads to burning out of the polymer matrix and formation of porous calcium hydroxyapatite residues consisting of nanoparticles with different morphology depending on the initial porous structure of polymer (from needle-shaped crystals with a length of 100–150 nm and about 10 nm in diameter to spheres with a diameter of 50–90 nm). The results obtained are relevant for the directional regulation of the structure and properties of bioactive substances and creation of modern materials for biomedical use.



中文翻译:

通过裂纹机理获得的纳米多孔聚烯烃薄膜中磷酸钙的模板合成

摘要

提出了一种基于多孔聚烯烃薄膜(全同立构聚丙烯,高密度聚乙烯)的有机-无机杂化纳米复合材料的替代生产方法,该复合材料通过在物理活性介质中的裂纹机理和磷酸钙变形。获得了不同结构的膜复合材料,其中包含10–25 wt%的填料。随着层的形成,在这些膜中立即在聚合物基质的孔中形成直径为15–50 nm的羟基磷灰石钙颗粒,其形态取决于原始多孔膜的结构及其可以通过反应条件控制参数。发现所获得的复合材料具有机械性能的各向异性,磷酸钙颗粒的引入导致聚合物基体的机械特性有所提高。纳米复合材料的高温加热(高达700°C)导致聚合物基体被烧尽,并形成多孔纳米羟基磷灰石残渣,该残基由具有不同形态的纳米颗粒组成,具体取决于聚合物的初始多孔结构(由具有针状晶体的针状晶体形成)。长度为100-150 nm,直径约10 nm的球体直径为50-90 nm)。获得的结果与生物活性物质的结构和性质的方向调节以及用于生物医学用途的现代材料的创建有关。纳米复合材料的高温加热(高达700°C)导致聚合物基体被烧尽,并形成多孔纳米羟基磷灰石残渣,该残基由具有不同形态的纳米颗粒组成,具体取决于聚合物的初始多孔结构(由具有针状晶体的针状晶体形成)。长度为100-150 nm,直径约10 nm的球体直径为50-90 nm)。获得的结果与生物活性物质的结构和性质的方向调节以及用于生物医学用途的现代材料的创建有关。纳米复合材料的高温加热(高达700°C)导致聚合物基体被烧尽,并形成多孔纳米羟基磷灰石残渣,该残基由具有不同形态的纳米颗粒组成,具体取决于聚合物的初始多孔结构(由具有针状晶体的针状晶体形成)。长度为100-150 nm,直径约10 nm的球体直径为50-90 nm)。获得的结果与生物活性物质的结构和性质的方向调节以及用于生物医学用途的现代材料的创建有关。

更新日期:2020-10-13
down
wechat
bug