当前位置: X-MOL 学术Lett. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formal power series for asymptotically hyperbolic Bach-flat metrics
Letters in Mathematical Physics ( IF 1.2 ) Pub Date : 2020-10-13 , DOI: 10.1007/s11005-020-01334-5
Aghil Alaee , Eric Woolgar

It has been observed by Maldacena that one can extract asymptotically anti-de Sitter Einstein $4$-metrics from Bach-flat spacetimes by imposing simple principles and data choices. We cast this problem in a conformally compact Riemannian setting. Following an approach pioneered by Fefferman and Graham for the Einstein equation, we find formal power series for conformally compactifiable, asymptotically hyperbolic Bach-flat 4-metrics expanded about conformal infinity. We also consider Bach-flat metrics in the special case of constant scalar curvature and in the special case of constant $Q$-curvature. This allows us to determine the free data at conformal infinity, and to select those choices that lead to Einstein metrics. Interestingly, the mass is part of that free data, in contrast to the pure Einstein case. We then choose a convenient generalization of the Bach tensor to (bulk) dimensions $n>4$ and consider the higher dimensional problem. We find that the free data for the expansions split into low-order and high-order pairs. The former pair consists of the metric on the conformal boundary and its first radial derivative, while the latter pair consists of the radial derivatives of order $n-2$ and $n-1$. Higher dimensional generalizations of the Bach tensor lack some of the geometrical meaning of the 4-dimensional case. This is reflected in the relative complexity of the higher dimensional problem, but we are able to obtain a relatively complete result if conformal infinity is not scalar flat.

中文翻译:

渐近双曲线 Bach-flat 度量的正式幂级数

Maldacena 已经观察到,通过强加简单的原理和数据选择,人们可以从巴赫平坦时空中提取渐近反德西特爱因斯坦 $4$ 度量。我们将这个问题投射到一个共形紧凑的黎曼设置中。遵循 Fefferman 和 Graham 为爱因斯坦方程开创的方法,我们找到了关于保形无穷大的共形可压缩、渐近双曲 Bach-flat 4-metrics 的形式幂级数。我们还在恒定标量曲率的特殊情况和恒定 $Q$-curvature 的特殊情况下考虑 Bach-flat 度量。这使我们能够确定共形无穷大的自由数据,并选择那些导致爱因斯坦度量的选择。有趣的是,质量是自由数据的一部分,与纯粹的爱因斯坦情况相反。然后,我们选择将巴赫张量方便地推广到(批量)维度 $n>4$ 并考虑更高维度的问题。我们发现扩展的自由数据分为低阶和高阶对。前一对由共形边界上的度量及其一阶径向导数组成,而后一对由 $n-2$ 和 $n-1$ 阶径向导数组成。巴赫张量的高维泛化缺乏 4 维情况的一些几何意义。这反映在高维问题的相对复杂性上,但如果共形无穷大不是标量平坦的,我们就能得到一个相对完整的结果。我们发现扩展的自由数据分为低阶和高阶对。前一对由保形边界上的度量及其一阶径向导数组成,而后一对由 $n-2$ 和 $n-1$ 阶径向导数组成。巴赫张量的高维泛化缺乏 4 维情况的一些几何意义。这反映在高维问题的相对复杂性上,但如果共形无穷大不是标量平坦的,我们就能得到一个相对完整的结果。我们发现扩展的自由数据分为低阶和高阶对。前一对由保形边界上的度量及其一阶径向导数组成,而后一对由 $n-2$ 和 $n-1$ 阶径向导数组成。巴赫张量的高维泛化缺乏 4 维情况的一些几何意义。这反映在高维问题的相对复杂性上,但如果共形无穷大不是标量平坦的,我们就能得到一个相对完整的结果。巴赫张量的高维泛化缺乏 4 维情况的一些几何意义。这反映在高维问题的相对复杂性上,但如果共形无穷大不是标量平坦的,我们就能得到一个相对完整的结果。巴赫张量的高维泛化缺乏 4 维情况的一些几何意义。这反映在高维问题的相对复杂性上,但如果共形无穷大不是标量平坦的,我们就能得到一个相对完整的结果。
更新日期:2020-10-13
down
wechat
bug