Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-cone ignition scheme for inertial confinement fusion
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 5 ) Pub Date : 2020-10-12 , DOI: 10.1098/rsta.2020.0015
J. Zhang 1, 2, 3 , W. M. Wang 1, 3, 4 , X. H. Yang 3, 5 , D. Wu 3, 6 , Y. Y. Ma 3, 5 , J. L. Jiao 3, 7 , Z. Zhang 1, 3 , F. Y. Wu 2, 3 , X. H. Yuan 2, 3 , Y. T. Li 1, 3 , J. Q. Zhu 3, 8
Affiliation  

While major progress has been made in the research of inertial confinement fusion, significant challenges remain in the pursuit of ignition. To tackle the challenges, we propose a double-cone ignition (DCI) scheme, in which two head-on gold cones are used to confine deuterium–tritium (DT) shells imploded by high-power laser pulses. The scheme is composed of four progressive controllable processes: quasi-isentropic compression, acceleration, head-on collision and fast heating of the compressed fuel. The quasi-isentropic compression is performed inside two head-on cones. At the later stage of the compression, the DT shells in the cones are accelerated to forward velocities of hundreds of km s–1. The head-on collision of the compressed and accelerated fuels from the cone tips transfer the forward kinetic energy to the thermal energy of the colliding fuel with an increased density. The preheated high-density fuel can keep its status for a period of approximately 200 ps. Within this period, MeV electrons generated by ps heating laser pulses, guided by a ns laser-produced strong magnetic field further heat the fuel efficiently. Our simulations show that the implosion inside the head-on cones can greatly mitigate the energy requirement for compression; the collision can preheat the compressed fuel of approximately 300 g cm−3 to a temperature above keV. The fuel can then reach an ignition temperature of greater than 5 keV with magnetically assisted heating of MeV electrons generated by the heating laser pulses. Experimental campaigns to demonstrate the scheme have already begun. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.

中文翻译:

惯性约束聚变双锥点火方案

虽然惯性约束聚变的研究取得了重大进展,但在追求点火方面仍然存在重大挑战。为了应对挑战,我们提出了一种双锥点火(DCI)方案,其中两个正面的金锥用于限制由高功率激光脉冲内爆的氘-氚(DT)壳。该方案由四个渐进可控过程组成:准等熵压缩、加速、正面碰撞和压缩燃料的快速加热。准等熵压缩是在两个正面锥体内进行的。在压缩的后期阶段,锥体中的 DT 壳被加速到数百公里 s-1 的前进速度。来自锥尖的压缩和加速燃料的正面碰撞将向前的动能传递给密度增加的碰撞燃料的热能。预热后的高密度燃料可保持其状态约 200 ps。在此期间,由 ps 加热激光脉冲产生的 MeV 电子在 ns 激光产生的强磁场的引导下进一步有效地加热燃料。我们的模拟表明,迎面锥体内的内爆可以大大降低压缩的能量需求;碰撞可以将大约 300 g cm-3 的压缩燃料预热到 keV 以上的温度。然后,通过加热激光脉冲产生的 MeV 电子的磁辅助加热,燃料可以达到大于 5 keV 的点火温度。展示该计划的实验活动已经开始。本文是讨论会议问题“高增益惯性聚变能的前景(第 1 部分)”的一部分。
更新日期:2020-10-12
down
wechat
bug