当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting the dark matter velocity distribution in galactic structures: tests against hydrodynamic cosmological simulations
Journal of Cosmology and Astroparticle Physics ( IF 6.4 ) Pub Date : 2020-10-09 , DOI: 10.1088/1475-7516/2020/10/031
Thomas Lacroix 1, 2 , Arturo Núñez-Castiñeyra 3, 4 , Martin Stref 2, 5 , Julien Lavalle 2 , Emmanuel Nezri 3
Affiliation  

Reducing theoretical uncertainties in Galactic dark matter (DM) searches is an important challenge as several experiments are now delving into the parameter space relevant to popular (particle or not) candidates. Since many DM signal predictions rely on the knowledge of the DM velocity distribution---direct searches, capture by stars, $p$-wave-suppressed or Sommerfeld-enhanced annihilation rate, microlensing of primordial black holes, etc.---it is necessary to assess the accuracy of our current theoretical handle. Beyond Maxwellian approximations or ad-hoc extrapolations of fits on cosmological simulations, approaches have been proposed to self-consistently derive the DM phase-space distribution only from the detailed mass content of the Galaxy and some symmetry assumptions (e.g. the Eddington inversion and its anisotropic extensions). Although theoretically sound, these methods are still based on simplifying assumptions and their relevance to real galaxies can be questioned. In this paper, we use zoomed-in cosmological simulations to quantify the associated uncertainties. Assuming isotropy, we predict the speed distribution and its moments from the DM and baryonic content measured in simulations, and compare them with the true ones. We reach a predictivity down to ~ 10% for some observables, significantly better than some Maxwellian models. This moderate theoretical error is particularly encouraging at a time when stellar surveys like the Gaia mission should allow us to improve constraints on Galactic mass models.

中文翻译:

预测星系结构中的暗物质速度分布:对流体动力学宇宙学模拟的测试

减少银河暗物质 (DM) 搜索中的理论不确定性是一项重要挑战,因为现在有几项实验正在深入研究与流行(粒子与否)候选对象相关的参数空间。由于许多 DM 信号预测依赖于 DM 速度分布的知识——直接搜索、被恒星捕获、$p$-波抑制或索末菲增强的湮灭率、原始黑洞的微透镜等——它有必要评估我们当前理论手柄的准确性。除了麦克斯韦近似或对宇宙学模拟拟合的临时外推之外,已经提出了一些方法来自洽地仅从星系的详细质量含量和一些对称假设(例如爱丁顿反演及其各向异性)推导出 DM 相空间分布扩展名)。虽然理论上是合理的,但这些方法仍然基于简化的假设,它们与真实星系的相关性可能会受到质疑。在本文中,我们使用放大的宇宙学模拟来量化相关的不确定性。假设各向同性,我们根据模拟中测量的 DM 和重子含量预测速度分布及其矩,并将它们与真实的进行比较。对于某些可观测值,我们达到了低至 10% 的预测率,明显优于某些麦克斯韦模型。在像盖亚任务这样的恒星调查应该允许我们改进对银河质量模型的限制时,这种适度的理论错误尤其令人鼓舞。我们使用放大的宇宙学模拟来量化相关的不确定性。假设各向同性,我们根据模拟中测量的 DM 和重子含量预测速度分布及其矩,并将它们与真实的进行比较。对于某些可观测值,我们达到了低至 10% 的预测率,明显优于某些麦克斯韦模型。在像盖亚任务这样的恒星调查应该允许我们改进对银河质量模型的限制时,这种适度的理论错误尤其令人鼓舞。我们使用放大的宇宙学模拟来量化相关的不确定性。假设各向同性,我们根据模拟中测量的 DM 和重子含量预测速度分布及其矩,并将它们与真实的进行比较。对于某些可观测值,我们达到了低至 10% 的预测率,明显优于某些麦克斯韦模型。在像盖亚任务这样的恒星调查应该允许我们改进对银河质量模型的限制时,这种适度的理论错误尤其令人鼓舞。明显优于某些麦克斯韦模型。在像盖亚任务这样的恒星调查应该允许我们改进对银河质量模型的限制时,这种适度的理论错误尤其令人鼓舞。明显优于某些麦克斯韦模型。在像盖亚任务这样的恒星调查应该允许我们改进对银河质量模型的限制时,这种适度的理论错误尤其令人鼓舞。
更新日期:2020-10-09
down
wechat
bug