当前位置: X-MOL 学术Nat. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band structure engineering and defect control of Ta 3 N 5 for efficient photoelectrochemical water oxidation
Nature Catalysis ( IF 37.8 ) Pub Date : 2020-10-12 , DOI: 10.1038/s41929-020-00522-9
Yequan Xiao , Chao Feng , Jie Fu , Faze Wang , Changli Li , Viktoria F. Kunzelmann , Chang-Ming Jiang , Mamiko Nakabayashi , Naoya Shibata , Ian D. Sharp , Kazunari Domen , Yanbo Li

Ta3N5 is a promising photoanode material with a theoretical maximum solar conversion efficiency of 15.9% for photoelectrochemical water splitting. However, the highest applied bias photon-to-current efficiency achieved so far is only 2.72%. To bridge the efficiency gap, effective carrier management strategies for Ta3N5 photoanodes should be developed. Here, we propose to use gradient Mg doping for band structure engineering and defect control of Ta3N5. The gradient Mg doping profile in Ta3N5 induces a gradient of the band edge energetics, which greatly enhances the charge separation efficiency. Furthermore, defect-related recombination is significantly suppressed due to the passivation effect of Mg dopants on deep-level defects and, more importantly, the matching of the gradient Mg doping profile with the distribution of defects within Ta3N5. As a result, a photoanode based on the gradient Mg-doped Ta3N5 delivers a low onset potential of 0.4 V versus that of a reversible hydrogen electrode and a high applied bias photon-to-current efficiency of 3.25 ± 0.05%.



中文翻译:

Ta 3 N 5的能带结构工程及缺陷控制,用于高效光电化学水氧化

Ta 3 N 5是一种有前途的光阳极材料,其理论上最大的太阳能转化效率为15.9%。但是,到目前为止,所达到的最高施加偏压光子-电流效率仅为2.72%。为了弥合效率差距,应该为Ta 3 N 5光阳极开发有效的载流子管理策略。在这里,我们建议使用梯度Mg掺杂进行能带结构工程和Ta 3 N 5的缺陷控制。Ta 3 N 5中的梯度Mg掺杂分布引起能带边缘能量的梯度,从而大大提高了电荷分离效率。此外,由于Mg掺杂剂对深层缺陷的钝化作用,更重要的是,梯度Mg掺杂分布与Ta 3 N 5内缺陷分布的匹配,显着抑制了与缺陷有关的重组。结果,与可逆氢电极相比,基于梯度Mg掺杂的Ta 3 N 5的光阳极提供0.4 V的低启动电位,并提供3.25±0.05%的高施加偏压光子-电流效率。

更新日期:2020-10-12
down
wechat
bug