当前位置: X-MOL 学术Opt. Laser Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing
Optics and Lasers in Engineering ( IF 4.6 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.optlaseng.2020.106416
Liu Huang , Liping Yan , Benyong Chen

Abstract In the digital holographic microscopy, accurate phase restoration is essential to quantitatively test microstructure, especially in the case of dislocations and coherent noise. In this paper, a new phase restoration method with an adaptive reliability mask for phase unwrapping is proposed. By using horizontal and vertical projections to segment the unreliability map and performing the adaptive iterative thresholding on each segmented region with a global expected unreliability value, the adaptive reliability mask for phase unwrapping can be obtained. The advantage of our method is that it can distinguish the true high unreliable pixels (dislocations, spikes and noises) and structure edge pixels. Ten simulated phase maps of partial USAF 1951 resolution target with dislocations, progressive aberration coefficients and noise standard deviations are generated to evaluate the performance of the proposed method. Experimental phase data of MEMS chip is adopted to verify the effectiveness of the proposed method. Simulation and experimental results demonstrated that the proposed method can restore a more accurate and reliable sample profile, which indicates that our method is suitable for 3D topography measurement of the complicated dense microstructure.

中文翻译:

具有自适应可靠性掩模的数字全息显微镜的相位恢复,用于微结构测试中的相位展开

摘要 在数字全息显微镜中,精确的相位恢复对于定量测试微观结构至关重要,尤其是在位错和相干噪声的情况下。在本文中,提出了一种具有用于相位展开的自适应可靠性掩模的新相位恢复方法。通过使用水平和垂直投影对不可靠性图进行分割,并对每个分割区域进行自适应迭代阈值处理,并使用全局预期不可靠性值,可以获得用于相位展开的自适应可靠性掩码。我们方法的优点是可以区分真正的高不可靠像素(错位、尖峰和噪声)和结构边缘像素。美国空军 1951 年部分分辨率目标有位错的十个模拟相位图,生成渐进像差系数和噪声标准偏差来评估所提出方法的性能。采用MEMS芯片的实验相位数据验证了所提方法的有效性。仿真和实验结果表明,所提出的方法可以恢复更准确和可靠的样品轮廓,这表明我们的方法适用于复杂致密微观结构的 3D 形貌测量。
更新日期:2021-03-01
down
wechat
bug