当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Case Study on the Origin of Near‐Earth Plasma
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2020-10-10 , DOI: 10.1029/2020ja028205
A. Glocer 1 , D. Welling 2 , C. R. Chappell 3 , G. Toth 4 , M.‐C. Fok 1 , C. Komar 1, 5 , S.‐B. Kang 1, 5 , N. Buzulukova 1, 6 , C. Ferradas 1, 5 , S. Bingham 7 , C. Mouikis 8
Affiliation  

This study presents simulations of the coupled space environment during a geomagnetic storm that separates the different sources of near‐Earth plasma. These simulations include separate fluids for solar wind and ionospheric protons, ionospheric oxygen, and the plasmasphere. Additionally, they include the effects of both a hot ring current population and a cold plasmaspheric population simultaneously for a geomagnetic storm. The modeled ring current population represents the solution of bounce‐averaged kinetic solution; the core plasmaspheric model assumes a fixed temperature of 1 eV and constant pressure along the field line. We find that during the storm, ionospheric protons can be a major contributor to the plasmasheet and ring current and that ionospheric plasma can largely displace solar wind protons in much of the magnetosphere under certain conditions. Indeed, the ionospheric source of plasma cannot be ignored. Significant hemispheric asymmetry is found between the outflow calculated in the summer and winter hemispheres, consistent with past observations. That asymmetric outflow is found to lead to asymmetric filling of the lobes, with the northern (summer) lobe receiving more outflow that has a higher proportion of O+ and the southern (winter) lobe receiving less outflow with a higher proportion of H+. We moreover find that the inclusion of the plasmasphere can have a system‐wide impact. Specifically, when the plasmasphere drainage plume reaches the magnetopause, it can reduce the reconnection rate, suppress ionospheric outflow and change its composition, change the composition in the magnetosphere, and reduce the ring current intensity.

中文翻译:

近地等离子体成因的案例研究

这项研究提出了在地磁风暴期间耦合空间环境的模拟,该磁场将近地等离子体的不同来源分开。这些模拟包括分别用于太阳风和电离层质子,电离层氧和等离子层的流体。此外,它们同时包括热环电流和冷等离子体层对地磁风暴的影响。建模的环电流总体表示反弹平均动力学解的解;核心等离子层模型假设固定温度为1 eV,沿磁力线的压力恒定。我们发现在暴风雨中 电离层质子可能是等离子片和环流的主要贡献者,在某些条件下,电离层质子可以在大部分磁层中大量取代太阳风质子。的确,等离子体的电离层源不容忽视。在夏季和冬季半球计算的流出量之间发现了明显的半球不对称性,与过去的观察结果一致。发现这种不对称流出导致叶的不对称填充,而北部(夏季)瓣接收的流出更多,而O的比例更高+和南部(冬季)叶流出较少,而H +比例较高。此外,我们发现,将等离子层包含在内会对整个系统产生影响。具体而言,当等离子层排流羽流达到磁层顶时,它可以降低重新连接率,抑制电离层流出并改变其组成,改变磁层中的组成并降低环电流强度。
更新日期:2020-11-02
down
wechat
bug