当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band dispersion and optical gain calculations of staggered type GaAs0.4Sb0.6/In0.7Ga0.3As/GaAs0.4Sb0.6 nano-heterostructure under electric field and [100] strain
Micro and Nanostructures ( IF 3.1 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.spmi.2020.106694
Md Riyaj , J.P. Vijay , A.M. Khan , Sandhya Kattayat , Savaş Kaya , M. Ayaz Ahmad , Shalendra Kumar , P.A. Alvi , Amit Rathi

Abstract In this paper, the numerical calculations for the band dispersion in GaAs0.4Sb0.6/In0.7Ga0.3As/GaAs0.4Sb0.6 staggered nano–scale heterostructure have been carried out for different values of the external electric field (0-200 kV/cm) by solving the 6 x 6 k.p Hamiltonian. In addition, the optical matrix elements have been calculated and their behaviors have been predicted for different values of field, strains and temperature. For the different values of charge carrier’s injection, different field strengths and different strains along [100], the optical gain within TE (Transverse Electric) and TM (Transverse Magnetic) modes have been simulated. The maximum optical gain is achieved ∼16170/cm at ∼ 2000 nm at room temperature without electric field; whereas under the external electric field of 60 kV/cm at room temperature the optical gain was found to be reduced up to ∼ 11807/cm at ∼ 1955 nm. Further, with the external strain of 8 GPa, the optical gain was found to be 13965/cm at 2079 nm. Moreover, the optical gain was found to shift towards lower values with red shift in wavelength at room temperature within TE and TM modes with increasing external strain along [100] direction. On behalf of the outcomes of the simulation, the modeled heterostructure can be utilized in the design of tunable laser diode operating in MIR (mid infrared region) region.

中文翻译:

交错型GaAs0.4Sb0.6/In0.7Ga0.3As/GaAs0.4Sb0.6纳米异质结构在电场和[100]应变下的能带色散和光学增益计算

摘要 本文针对不同外电场值(0- 200 kV/cm) 通过求解 6 x 6 kp 哈密顿量。此外,还计算了光学矩阵元素,并针对不同的场、应变和温度值预测了它们的行为。对于不同的载流子注入值、不同的场强和沿 [100] 的不同应变,已经模拟了 TE(横向电)和 TM(横向磁)模式内的光学增益。在室温下无电场的情况下,在 2000 nm 处获得最大光学增益为 16170/cm;而在室温下 60 kV/cm 的外部电场下,发现光增益在约 1955 nm 处降低至约 11807/cm。此外,在 8 GPa 的外部应变下,发现在 2079 nm 处的光学增益为 13965/cm。此外,发现随着沿 [100] 方向的外部应变增加,在室温下,TE 和 TM 模式内的波长发生红移,光学增益向较低值移动。代表模拟结果,建模的异质结构可用于设计在 MIR(中红外区域)区域工作的可调激光二极管。发现随着沿 [100] 方向的外部应变增加,TE 和 TM 模式内的室温下波长发生红移,光学增益向较低值移动。代表模拟结果,建模的异质结构可用于设计在 MIR(中红外区域)区域工作的可调激光二极管。发现随着沿 [100] 方向的外部应变增加,TE 和 TM 模式内的室温下波长发生红移,光学增益向较低值移动。代表模拟结果,建模的异质结构可用于设计在 MIR(中红外区域)区域工作的可调激光二极管。
更新日期:2021-02-01
down
wechat
bug