当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved pushover method for seismic analysis of shallow buried underground rectangular frame structure
Soil Dynamics and Earthquake Engineering ( IF 4 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.soildyn.2020.106363
Jiawei Jiang , Chengshun Xu , Hesham M El Naggar , Xiuli Du , Zigang Xu , Jamal Assaf

Abstract Simplified methods are widely used in the seismic design of underground structures, but they generally ignore the influence of vertical ground motion. This can result in unreliable design because seismic earth pressure induced by vertical ground motion can have a significant adverse effect on their seismic performance. Therefore, this paper proposes an improved pushover analysis method (I-PAM) that applies distributed horizontal and vertical inertial forces to simulate the mechanical behavior of underground structures under both horizontal and vertical ground motions. The profile of load distribution and target displacement is calculated from corresponding site response analysis. A rigorous time-history dynamic analysis method (TDAM) based on the finite element numerical analysis was employed in three case studies to evaluate the performance of the developed I-PAM. The results showed that the I-PAM can accurately predict the structure's peak axial force, bending moment and displacement under the combined action of horizontal and vertical ground motions, especially for lower ground motion intensity. It was also found that the responses of the center column and middle slap were calculated with higher accuracy compared to that of the components in direct contact with soil including sidewalls and top and bottom slabs. The developed I-PAM offers a framework for further development and enhancement of simplified analysis methods for seismic design of underground structures.

中文翻译:

浅埋地下矩形框架结构抗震分​​析的改进Pushover法

摘要 地下结构抗震设计中广泛采用简化方法,但一般忽略垂直地震动的影响。这会导致设计不可靠,因为垂直地面运动引起的地震土压力会对它们的抗震性能产生显着的不利影响。因此,本文提出了一种改进的推覆分析方法(I-PAM),该方法应用分布的水平和垂直惯性力来模拟地下结构在水平和垂直地面运动下的力学行为。载荷分布和目标位移的分布由相应的现场响应分析计算得出。在三个案例研究中采用基于有限元数值分析的严格时程动态分析方法 (TDAM) 来评估开发的 I-PAM 的性能。结果表明,I-PAM可以准确预测水平和垂直地震动共同作用下结构的峰值轴力、弯矩和位移,特别是对于较低的地震动强度。还发现与直接接触土壤的组件(包括侧壁和顶板和底板)相比,中心柱和中间板条的响应计算精度更高。开发的 I-PAM 为进一步开发和增强地下结构抗震设计的简化分析方法提供了一个框架。结果表明,I-PAM可以准确预测水平和垂直地震动共同作用下结构的峰值轴力、弯矩和位移,特别是对于较低的地震动强度。还发现与直接接触土壤的组件(包括侧壁和顶板和底板)相比,中心柱和中间板条的响应计算精度更高。开发的 I-PAM 为进一步开发和增强地下结构抗震设计的简化分析方法提供了一个框架。结果表明,I-PAM可以准确预测水平和垂直地震动共同作用下结构的峰值轴力、弯矩和位移,特别是对于较低的地震动强度。还发现与直接接触土壤的组件(包括侧壁和顶板和底板)相比,中心柱和中间板条的响应计算精度更高。开发的 I-PAM 为进一步开发和增强地下结构抗震设计的简化分析方法提供了一个框架。还发现与直接接触土壤的组件(包括侧壁和顶板和底板)相比,中心柱和中间板条的响应计算精度更高。开发的 I-PAM 为进一步开发和增强地下结构抗震设计的简化分析方法提供了一个框架。还发现与直接接触土壤的组件(包括侧壁和顶板和底板)相比,中心柱和中间板条的响应计算精度更高。开发的 I-PAM 为进一步开发和增强地下结构抗震设计的简化分析方法提供了一个框架。
更新日期:2021-01-01
down
wechat
bug