当前位置: X-MOL 学术Physica E Low Dimens. Syst. Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons
Physica E: Low-dimensional Systems and Nanostructures ( IF 3.3 ) Pub Date : 2020-10-09 , DOI: 10.1016/j.physe.2020.114438
H. Abdelsalam , V.A. Saroka , N.H. Teleb , M. Ali , W. Osman , Q. Zhang

The electronic and adsorption properties of chevron and cove-edged graphene nanoribbons (GNRs) are studied using first principles calculations. The positive binding and adsorption energies in conjunction with the positive infrared frequencies insure the stability of the considered GNRs. The results show that the binding strength of coved-edged GNRs is higher than that of chevron ones because the morphology of the latter requires a higher number of C-atoms at the edges than the former. The edge atoms in chevron GNRs create interactive edge states that significantly decreases the energy gap (Eg = 0.03 eV) with respect to the wide gap between bulk states in cove-edged ones (Eg = 2.19 eV). The molecular orbitals distributions of these edge states are localized only on the arms of the nanoribbon making it a potential topological insulator. The energy gap between bulk states in cove-edged decreases by increasing the width due to quantum size effect, while in chevron GNRs the gap between edge states increases because of the interaction among these states. The adsorption of methylene blue shows interesting properties depending on the type of the nanoribbons, the interaction position, and the attached chemical group. The interactive edge states provide moderate adsorption on the arms of the nanoribbons and the attached chemical groups enhance the adsorption by adding new adsorption positions. The additional molecular orbitals from the physically adsorbed dye lower the band gap and create semimetal GNRs with zero or negative band gap.



中文翻译:

扩展人字形和凹边石墨烯纳米带的电子和吸附性能

使用第一性原理计算研究了V形和拱形石墨烯纳米带(GNR)的电子和吸附性能。正的结合能和吸附能与正的红外频率一起确保了所考虑的GNR的稳定性。结果表明,凹形边缘的GNR的结合强度高于V形,因为后者的形态需要比前者更高的C原子数。V形人字形GNR中的边缘原子产生了相互作用的边缘态,相对于处于边缘的大块态之间的宽缝隙(Eg = 2.19 eV),该能隙显着减小了能隙(Eg = 0.03 eV)。这些边缘态的分子轨道分布仅位于纳米带的臂上,使其成为潜在的拓扑绝缘体。由于量子尺寸效应,通过增加宽度,在峰形边缘的体态之间的能隙减小,而在人字形GNR中,由于这些态之间的相互作用,边缘态之间的能隙增大。根据纳米带的类型,相互作用位置和连接的化学基团,亚甲基蓝的吸附显示出令人感兴趣的特性。相互作用的边缘态在纳米带的臂上提供适度的吸附,并且所连接的化学基团通过增加新的吸附位置来增强吸附。来自物理吸附染料的其他分子轨道降低了带隙,并产生了带隙为零或为负的半金属GNR。而在人字形GNR中,边缘状态之间的间隙会由于这些状态之间的相互作用而增加。根据纳米带的类型,相互作用位置和连接的化学基团,亚甲基蓝的吸附显示出令人感兴趣的特性。相互作用的边缘态在纳米带的臂上提供适度的吸附,并且所连接的化学基团通过增加新的吸附位置来增强吸附。来自物理吸附染料的其他分子轨道降低了带隙,并产生了带隙为零或为负的半金属GNR。而在人字形GNR中,边缘状态之间的间隙会由于这些状态之间的相互作用而增加。根据纳米带的类型,相互作用位置和连接的化学基团,亚甲基蓝的吸附显示出令人感兴趣的特性。相互作用的边缘态在纳米带的臂上提供适度的吸附,并且所连接的化学基团通过增加新的吸附位置来增强吸附。来自物理吸附染料的其他分子轨道降低了带隙,并产生了带隙为零或为负的半金属GNR。相互作用的边缘态在纳米带的臂上提供适度的吸附,并且所连接的化学基团通过增加新的吸附位置来增强吸附。来自物理吸附染料的其他分子轨道降低了带隙,并产生了带隙为零或为负的半金属GNR。相互作用的边缘态在纳米带的臂上提供适度的吸附,并且所连接的化学基团通过增加新的吸附位置来增强吸附。来自物理吸附染料的其他分子轨道降低了带隙,并产生了带隙为零或为负的半金属GNR。

更新日期:2020-10-13
down
wechat
bug