当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Multi-region saliency-aware learning for cross-domain placenta image segmentation
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-10-10 , DOI: 10.1016/j.patrec.2020.10.004
Zhuomin Zhang; Dolzodmaa Davaasuren; Chenyan Wu; Jeffery A. Goldstein; Alison D. Gernand; James Z. Wang

We propose a multi-region saliency-aware learning (MSL) method for cross-domain placenta image segmentation. Unlike most existing image-level transfer learning methods that fail to preserve the semantics of paired regions, our MSL incorporates the attention mechanism and a saliency constraint into the adversarial translation process, which can realize multi-region mappings in the semantic level. Specifically, the built-in attention module serves to detect the most discriminative semantic regions that the generator should focus on. Then we use the attention consistency as another guidance for retaining semantics after translation. Furthermore, we exploit the specially designed saliency-consistent constraint to enforce the semantic consistency by requiring the saliency regions unchanged. We conduct experiments using two real-world placenta datasets we have collected. We examine the efficacy of this approach in (1) segmentation and (2) prediction of the placental diagnoses of fetal and maternal inflammatory response (FIR, MIR). Experimental results show the superiority of the proposed approach over the state of the art.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug