当前位置: X-MOL 学术Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the surface layer structure in opal-like plasmonic-photonic crystals for efficient excitation of optical Tamm states
Optical Materials ( IF 3.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.optmat.2020.110404
A.F. Valitova , A.V. Koryukin , A.R. Gazizov , M. Kh Salakhov

Abstract We investigate the transmission of light through three-dimensional structures in opal-like plasmonic-photonic crystals with an Au surface layer of different geometries. We study how the inclusion of buffer layers of various forms affects the spectral characteristics of the structures. Three-dimensional photonic crystals have significant advantages over one-dimensional ones since they display a complete photonic bandgap and porosity. Controlling the spectral characteristics of the hybrid plasmonic-photonic mode is an important task that offers the possibility of creating tunable devices based on such structures. In this work we show that the optical properties of structures with different shapes of the surface layer do not depend on light polarization, except for structures with a corrugated Au layer and a corrugated buffer layer. The bandwidth of a structure with a corrugated Au layer is smaller and shows polarization sensitivity in contrast to a structure with a smooth Au layer. The optical characteristics of hybrid structures undergo significant changes when buffer layers of various shapes are introduced between the photonic crystal and the Au layer. The width of the peak in the transmission spectra changes and its intensity increases against the background after the improvement of the structure of the plasmonic-photonic crystal. Thus, opal-like plasmonic-photonic crystals with different structure of the surface layer have spectral features that can be used in integrated circuits, biosensors, and resonators.

中文翻译:

改善蛋白石状等离子体光子晶体的表面层结构,以有效激发光学 Tamm 状态

摘要 我们研究了光通过具有不同几何形状的 Au 表面层的蛋白石状等离子体光子晶体中的三维结构的传输。我们研究包含各种形式的缓冲层如何影响结构的光谱特性。三维光子晶体比一维光子晶体具有显着优势,因为它们显示出完整的光子带隙和孔隙率。控制混合等离子体光子模式的光谱特性是一项重要任务,它提供了创建基于此类结构的可调器件的可能性。在这项工作中,我们表明具有不同表面层形状的结构的光学特性不依赖于光偏振,除了具有波纹金层和波纹缓冲层的结构。与具有平滑 Au 层的结构相比,具有波纹 Au 层的结构的带宽更小并且显示出偏振敏感性。当在光子晶体和金层之间引入各种形状的缓冲层时,混合结构的光学特性会发生显着变化。等离子光子晶体的结构改进后,透射光谱中峰的宽度发生变化,其强度随着背景的变化而增加。因此,具有不同表面层结构的蛋白石状等离子体光子晶体具有可用于集成电路、生物传感器和谐振器的光谱特征。当在光子晶体和金层之间引入各种形状的缓冲层时,混合结构的光学特性会发生显着变化。等离子光子晶体的结构改进后,透射光谱中峰的宽度发生变化,其强度随着背景的变化而增加。因此,具有不同表面层结构的蛋白石状等离子体光子晶体具有可用于集成电路、生物传感器和谐振器的光谱特征。当在光子晶体和金层之间引入各种形状的缓冲层时,混合结构的光学特性会发生显着变化。等离子体-光子晶体结构的改进后,透射光谱中峰的宽度发生变化,其强度随着背景的变化而增加。因此,具有不同表面层结构的类蛋白石等离子体光子晶体具有可用于集成电路、生物传感器和谐振器的光谱特征。等离子光子晶体的结构改进后,透射光谱中峰的宽度发生变化,其强度随着背景的变化而增加。因此,具有不同表面层结构的蛋白石状等离子体光子晶体具有可用于集成电路、生物传感器和谐振器的光谱特征。等离子光子晶体的结构改进后,透射光谱中峰的宽度发生变化,其强度随着背景的变化而增加。因此,具有不同表面层结构的蛋白石状等离子体光子晶体具有可用于集成电路、生物传感器和谐振器的光谱特征。
更新日期:2020-12-01
down
wechat
bug