当前位置: X-MOL 学术J. Pure Appl. Algebra › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Schofield sequences in the Euclidean case
Journal of Pure and Applied Algebra ( IF 0.8 ) Pub Date : 2021-05-01 , DOI: 10.1016/j.jpaa.2020.106586
Csaba Szántó , István Szöllősi

Let $k$ be a field and consider the path algebra $kQ$ of the quiver $Q$. A pair of indecomposable $kQ$-modules $(Y,X)$ is called an orthogonal exceptional pair if the modules are exceptional and $\operatorname{Hom}(X,Y)=\operatorname{Hom}(Y,X)=\operatorname{Ext}^{1}(X,Y)=0$. Denote by $\mathcal{F}(X,Y)$ the full subcategory of objects having filtration with factors $X$ and $Y$. By the theorem of Schofield if $Z$ is exceptional but not simple, then $Z\in\mathcal{F}(X,Y)$ for some orthogonal exceptional pair $(Y,X)$, and $Z$ is not a simple object in $\mathcal{F}(X,Y)$. In fact, there are precisely $s(Z)-1$ such pairs, where $s(Z)$ is the support of $Z$ (i.e the number of nonzero components in ${\underline\dim}Z$). Whereas it is easy to construct $Z$ given $X$ and $Y$, there is no convenient procedure yet to determine the possible modules $X$ (called Schofield submodules of $Z$) and then $Y$ (called Schofield factors of $Z$), when $Z$ is given. We present such an explicit procedure in the tame case, i.e when $Q$ is Euclidean.

中文翻译:

欧几里得情况下的斯科菲尔德序列

令 $k$ 为一个字段,并考虑箭袋 $Q$ 的路径代数 $kQ$。一对不可分解的 $kQ$-modules $(Y,X)$ 称为正交异常对,如果模块是异常的并且 $\operatorname{Hom}(X,Y)=\operatorname{Hom}(Y,X) =\operatorname{Ext}^{1}(X,Y)=0$。用 $\mathcal{F}(X,Y)$ 表示具有因子 $X$ 和 $Y$ 过滤的对象的完整子类别。根据 Schofield 定理,如果 $Z$ 是例外但不简单,则 $Z\in\mathcal{F}(X,Y)$ 对于某些正交例外对 $(Y,X)$,而 $Z$ 不是$\mathcal{F}(X,Y)$ 中的一个简单对象。事实上,正好有 $s(Z)-1$ 这样的对,其中 $s(Z)$ 是 $Z$ 的支持(即 ${\underline\dim}Z$ 中非零分量的数量)。鉴于给定 $X$ 和 $Y$ 很容易构造 $Z$,当给定 $Z$ 时,还没有方便的程序来确定可能的模块 $X$(称为 $Z$ 的 Schofield 子模块)然后是 $Y$(称为 $Z$ 的 Schofield 因子)。我们在温和的情况下,即当 $Q$ 是欧几里得时,我们提出了这样一个明确的过程。
更新日期:2021-05-01
down
wechat
bug