当前位置: X-MOL 学术Intermetallics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetocaloric effect and microstructure of amorphous/nanocrystalline HoErFe melt-extracted microwires
Intermetallics ( IF 4.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.intermet.2020.106974
Ying Bao , Hongxian Shen , Jingshun Liu , Hangboce Yin , Shenyuan Gao , Jierong Liang , Christian R.H. Bahl , Jianfei Sun , Kurt Engelbrecht

Abstract High-entropy alloys (HEA) represent potentially disruptive materials across multiple industries, especially for refrigeration technologies. Building metal components layer-by-layer increases design freedom and manufacturing flexibility, thereby enabling high magnetic thermal properties of the multicomponent alloy. However, excessive alloying elements could limit the mass production potential, while prolonging the time to market. Here we demonstrate that a high performance magnetocaloric material can be synthesized from only three elements, HoErFe, by taking advantage of the combination of rare earth and transition elements. Novel medium-entropy alloys (MEA) are prepared by melt-extraction and exhibit excellent magnetocaloric properties. The amorphous/nanocrystalline structure of the microwires, which is confirmed by both transmission electron microscopy (TEM) and X-ray diffraction (XRD), gives the primary contribution to the MCE. The microwires undergo a ferromagnetic-paramagnetic (FM-PM) transition near the Curie temperature (TC = ~44 K), and a spin-glass (SG) behavior could be observed below the TC. The maximum magnetic entropy (-ΔSMmax) was 9.5 J kg−1 K−1 under a field change of 5 T. Meanwhile, the refrigerant capacity (RC) and the relative cooling power (RCP) of the alloy microwires were 450 J·kg−1and 588 J kg−1, respectively. The high refrigeration efficiency and high magnetocaloric effect that is reversible make these novel metallic microwires attractive working materials for low-temperature magnetic refrigeration applications.

中文翻译:

非晶/纳米晶HoErFe熔体提取微丝的磁热效应和微观结构

摘要 高熵合金 (HEA) 代表了跨多个行业的潜在破坏性材料,尤其是对于制冷技术。逐层构建金属部件增加了设计自由度和制造灵活性,从而使多组分合金具有高磁热性能。然而,过多的合金元素可能会限制大规模生产的潜力,同时延长上市时间。在这里,我们证明了通过利用稀土和过渡元素的组合,可以仅由三种元素 HoErFe 合成高性能磁热材料。新型中熵合金 (MEA) 是通过熔融萃取制备的,具有优异的磁热性能。微丝的非晶/纳米晶结构,透射电子显微镜 (TEM) 和 X 射线衍射 (XRD) 都证实了这一点,这对 MCE 做出了主要贡献。微丝在居里温度 (TC = ~44 K) 附近经历铁磁-顺磁 (FM-PM) 转变,并且在 TC 以下可以观察到自旋玻璃 (SG) 行为。在5 T的场变化下,最大磁熵(-ΔSMmax)为9.5 J kg-1 K-1。同时,合金微丝的制冷剂容量(RC)和相对冷却功率(RCP)为450 J·kg -1 和 588 J kg-1,分别。高制冷效率和可逆的高磁热效应使这些新型金属微丝成为低温磁制冷应用的有吸引力的工作材料。微丝在居里温度 (TC = ~44 K) 附近经历铁磁-顺磁 (FM-PM) 转变,并且在 TC 以下可以观察到自旋玻璃 (SG) 行为。在5 T的场变化下,最大磁熵(-ΔSMmax)为9.5 J kg-1 K-1。同时,合金微丝的制冷剂容量(RC)和相对冷却功率(RCP)为450 J·kg -1 和 588 J kg-1,分别。高制冷效率和可逆的高磁热效应使这些新型金属微丝成为低温磁制冷应用的有吸引力的工作材料。微丝在居里温度 (TC = ~44 K) 附近经历铁磁-顺磁 (FM-PM) 转变,并且在 TC 以下可以观察到自旋玻璃 (SG) 行为。在5 T的场变化下,最大磁熵(-ΔSMmax)为9.5 J kg-1 K-1。同时,合金微丝的制冷剂容量(RC)和相对冷却功率(RCP)为450 J·kg -1 和 588 J kg-1,分别。高制冷效率和可逆的高磁热效应使这些新型金属微丝成为低温磁制冷应用的有吸引力的工作材料。5 J kg-1 K-1 在 5 T 场变化下。同时,合金微丝的制冷剂容量 (RC) 和相对冷却功率 (RCP) 分别为 450 J·kg-1 和 588 J kg-1 . 高制冷效率和可逆的高磁热效应使这些新型金属微丝成为低温磁制冷应用的有吸引力的工作材料。5 J kg-1 K-1 在 5 T 场变化下。同时,合金微丝的制冷剂容量 (RC) 和相对冷却功率 (RCP) 分别为 450 J·kg-1 和 588 J kg-1 . 高制冷效率和可逆的高磁热效应使这些新型金属微丝成为低温磁制冷应用的有吸引力的工作材料。
更新日期:2020-12-01
down
wechat
bug