当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Engineering of Polyhedral Carbon@Hollowed Carbon@SiO2 Nanobox with Tunable Structure for Enhanced Lithium Ion Battery
Applied Surface Science ( IF 6.7 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.apsusc.2020.148039
Zehao Zhang , Qiuzhi Huang , Wei Ma , Haibo Li

Abstract In this work, the polyhedral carbon@hollowed carbon@SiO2 (PC@HC@SiO2) nanocubes are designed by employing the ZIF-8 as template for high-performance lithium-ion batteries (LIBs) anode. The nanostructures of ZIF-8@SiO2 can be tunneled by controlling the hydrolysis durations of TEOS. As a result, the PC@HC@SiO2 composite is obtained by a subsequent high temperature carbonization treatment on ZIF-8@SiO2. When used as anode for LIBs, it exhibits high initial discharge capacity of 863.6 mAh g−1 with Coulombic efficiency of 85% at the current density of 0.1 A g−1. Further, the reversible capacity stabilizes at 723 mAh g−1 after 150 cycles. Even the current density is increased to 1.0 A g−1, a highly reversible capacity of 321.2 mAh g−1 can be enabled after 800 cycles, demonstrating the superior rate and long cycling capability. Remarkably, the density functional theory calculation realizes that the lithium storage capacity of PC@HC@SiO2 is significantly enhanced by the strong interfacial interaction between the HC and the SiO2. Besides, the novel nanostructure of PC@HC@SiO2 not only promotes the kinetics for lithiation/de-lithiation and diffusion process, but also relieves the volume expansion, leading to high anode performance.

中文翻译:

用于增强型锂离子电池的具有可调结构的多面体碳@中空碳@SiO2纳米盒的界面工程

摘要 在这项工作中,以 ZIF-8 为模板设计了多面体碳@中空碳@SiO2 (PC@HC@SiO2) 纳米立方体,用于高性能锂离子电池 (LIBs) 负极。ZIF-8@SiO2 的纳米结构可以通过控制 TEOS 的水解时间形成隧道。结果,通过随后在 ZIF-8@SiO2 上进行高温碳化处理获得 PC@HC@SiO2 复合材料。当用作 LIB 的阳极时,它表现出 863.6 mAh g-1 的高初始放电容量,在 0.1 A g-1 的电流密度下库仑效率为 85%。此外,可逆容量在 150 次循环后稳定在 723 mAh g-1。即使电流密度增加到 1.0 A g-1,800 次循环后仍可实现 321.2 mAh g-1 的高度可逆容量,证明了优异的倍率和长循环能力。值得注意的是,密度泛函理论计算发现,HC与SiO2之间的强界面相互作用显着提高了PC@HC@SiO2的储锂容量。此外,PC@HC@SiO2 的新型纳米结构不仅促进了锂化/去锂化和扩散过程的动力学,而且缓解了体积膨胀,从而提高了负极性能。
更新日期:2021-02-01
down
wechat
bug