当前位置: X-MOL 学术Top. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoreactivity of Deep VB Titania Attained Via Molecular Layer Deposition; Interplay of Metal Oxide Thin Film Built-in Strain and Molecular Effects
Topics in Catalysis ( IF 3.6 ) Pub Date : 2020-10-10 , DOI: 10.1007/s11244-020-01390-0
Swetha Jayanthi , Debabrata Sarkar , Dereje Hailu Taffa , Roie Yerushalmi

Calcination of hybrid organic–inorganic Titanium-Ethylene Glycol (Ti-EG) thin films yield non-stoichiometric titania with deep valence band maximum (VBM) with down-shift of up to 450 meV relative to stoichiometric TiO2. We previously reported the enhanced photocatalytic (PC) reactivity of these materials by demonstrating direct photocatalytic production of H2O2 and high degradation rates of organic molecules (Ishchuk et al. in ACS Nano 6:7263–7269, 2012; Kaynan et al. in J Mater Chem A 2:13822–13826, 2014; Sarkar et al. in J Phys Chem C 120:3853–3862, 2016). Here we show that the down shift in VBM is related to strain effects at the metal oxide thin film originating from the calcination process. The deep VBM position, namely high oxidative potential of photogenerated holes allows the study of PC degradation reactions of challenging targets such as Benzoic Acids (BAs) in water and porphyrin monolayers. Systematic study of these systems as probe molecules provide insights regarding the electronic details, including the molecular details, such as ionization potentials, molecular dipoles, and charge densities at the molecular side, and molecule-oxide interactions in determining the overall PC process. The analyses provide insights regarding (i) the role of strain in attaining deep VB titania and, (ii) specific insights regarding PC degradation of relatively robust, high oxidation potential materials on metal oxide (MO) thin film catalysts. Deep-VB oxide materials may pave the way for attaining a promising strategy for extending the use of light energy for removal of organic pollutants and for photocatalysis in general. Specifically, deep VB titania is found to be effective in handling BAs, which is highly challenging due to their chemical robustness, high bio-recalcitrance, and high oxidation potentials making these compounds difficult to degrade by oxidative paths. This combination of properties leads to broad impact on water reservoirs in extensive areas. Therefore, there is an on-going drive to set strategies that utilize nontoxic materials with high degradation activities towards aromatic carboxylic acids.



中文翻译:

通过分子层沉积获得的深VB二氧化钛的光反应性;金属氧化物薄膜内置应变的相互作用和分子效应

混合有机-无机钛-乙二醇(Ti-EG)薄膜的煅烧产生具有深价带最大值(VBM)的非化学计量的二氧化钛,相对于化学计量的TiO 2,其下移量高达450 meV 。我们以前通过证明直接光催化生产H 2 O 2来报告这些材料增强的光催化(PC)反应性。和有机分子的高降解率(Ishchuk等人,ACS Nano 6:7263–7269,2012; Kaynan等人,J Mater Chem A 2:13822–13826,2014; Sarkar等人,J Phys Chem C 120 :3853-3862,2016年)。在这里,我们显示VBM的下移与源自煅烧过程的金属氧化物薄膜的应变效应有关。较深的VBM位置,即光生空穴的高氧化电位,使人们能够研究具有挑战性的目标,例如水和卟啉单层中的苯甲酸(BAs)等PC的降解反应。对这些系统作为探针分子的系统研究提供了有关电子细节的见解,包括分子细节,例如电离势,分子偶极子和分子侧的电荷密度,以及确定整个PC过程的分子-氧化物相互作用。这些分析提供了有关以下方面的见解:(i)应变在获得深VB二氧化钛中的作用;以及(ii)关于在金属氧化物(MO)薄膜催化剂上相对坚固,高氧化性材料的PC降解的特定见解。深VB氧化物材料可能为实现一种有前途的策略铺平道路,该策略将光能的使用扩展到有机污染物的去除和总体上的光催化。具体而言,发现深VB二氧化钛可有效处理BA,由于其化学稳健性,高生物难降解性和高氧化电位,使这些化合物难以通过氧化途径降解,因此对BA的处理极具挑战性。这些特性的结合对广大地区的水库产生了广泛的影响。因此,

更新日期:2020-10-11
down
wechat
bug