当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The missing link in gravitational-wave astronomy: Discoveries waiting in the decihertz range
Classical and Quantum Gravity ( IF 3.5 ) Pub Date : 2020-10-08 , DOI: 10.1088/1361-6382/abb5c1
Manuel Arca Sedda 1 , Christopher P L Berry 2, 3 , Karan Jani 4 , Pau Amaro-Seoane 5, 6, 7, 8 , Pierre Auclair 9 , Jonathon Baird 10 , Tessa Baker 11 , Emanuele Berti 12 , Katelyn Breivik 13 , Adam Burrows 14 , Chiara Caprini 9 , Xian Chen 6, 15 , Daniela Doneva 16 , Jose M Ezquiaga 17 , K E Saavik Ford 18, 19 , Michael L Katz 2 , Shimon Kolkowitz 20 , Barry McKernan 18, 19 , Guido Mueller 21 , Germano Nardini 22, 23 , Igor Pikovski 24 , Surjeet Rajendran 12 , Alberto Sesana 25 , Lijing Shao 6 , Nicola Tamanini 26 , David Vartanyan 27 , Niels Warburton 28 , Helvi Witek 29 , Kaze Wong 12 , Michael Zevin 2
Affiliation  

The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like LIGO will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will enable gravitational-wave observations of the massive black holes in galactic centres. Between LISA and ground-based observatories lies the unexplored decihertz gravitational-wave frequency band. Here, we propose a Decihertz Observatory to cover this band, and complement observations made by other gravitational-wave observatories. The decihertz band is uniquely suited to observation of intermediate-mass ($\sim 10^2$-$10^4 M_\odot$) black holes, which may form the missing link between stellar-mass and massive black holes, offering a unique opportunity to measure their properties. Decihertz observations will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing decihertz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity and the Standard Model of particle physics. Overall, a Decihertz Observatory will answer key questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.

中文翻译:

引力波天文学中缺失的一环:在分赫范围内等待的发现

引力波天文革命始于 2015 年 LIGO 对两个恒星质量黑洞合并的观察。在接下来的几十年里,像 LIGO 这样的地面探测器将扩大其影响范围,发现数千个恒星质量的双星。在 2030 年代,天基 LISA 将能够对银河系中心的大质量黑洞进行引力波观测。在 LISA 和地面天文台之间是未探索的分赫引力波频带。在这里,我们建议建立一个 Decihertz 天文台来覆盖这个波段,并补充其他引力波天文台的观测结果。分赫带特别适合观测中等质量($\sim 10^2$-$10^4 M_\odot$)黑洞,这可能形成恒星质量和大质量黑洞之间的缺失环节,提供了一个独特的机会来衡量他们的属性。分赫兹观测将能够在恒星质量双星合并前数天到数年探测它们,并由地面探测器观测到,提供附近双中子星合并的早期预警,并能够测量双黑洞的偏心率,提供具有启发性的见解进入他们的阵型。观察分赫引力波也开启了在新实验室测试基础物理学的可能性,允许对广义相对论和粒子物理学标准模型进行独特的测试。总体而言,Decihertz 天文台将回答有关黑洞如何在宇宙时间中形成和演化的关键问题,为多信使天文学开辟新的途径,并促进我们对引力、粒子物理学和宇宙学的理解。
更新日期:2020-10-08
down
wechat
bug