当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A machine learning framework for LES closure terms
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-10-01 , DOI: arxiv-2010.03030
Marius Kurz and Andrea Beck

In the present work, we explore the capability of artificial neural networks (ANN) to predict the closure terms for large eddy simulations (LES) solely from coarse-scale data. To this end, we derive a consistent framework for LES closure models, with special emphasis laid upon the incorporation of implicit discretization-based filters and numerical approximation errors. We investigate implicit filter types, which are inspired by the solution representation of discontinuous Galerkin and finite volume schemes and mimic the behaviour of the discretization operator, and a global Fourier cutoff filter as a representative of a typical explicit LES filter. Within the perfect LES framework, we compute the exact closure terms for the different LES filter functions from direct numerical simulation results of decaying homogeneous isotropic turbulence. Multiple ANN with a multilayer perceptron (MLP) or a gated recurrent unit (GRU) architecture are trained to predict the computed closure terms solely from coarse-scale input data. For the given application, the GRU architecture clearly outperforms the MLP networks in terms of accuracy, whilst reaching up to 99.9% cross-correlation between the networks' predictions and the exact closure terms for all considered filter functions. The GRU networks are also shown to generalize well across different LES filters and resolutions. The present study can thus be seen as a starting point for the investigation of data-based modeling approaches for LES, which not only include the physical closure terms, but account for the discretization effects in implicitly filtered LES as well.

中文翻译:

LES 闭包术语的机器学习框架

在目前的工作中,我们探索了人工神经网络 (ANN) 仅从粗尺度数据预测大涡模拟 (LES) 闭合项的能力。为此,我们为 LES 闭包模型推导出了一个一致的框架,特别强调了基于隐式离散化的滤波器和数值近似误差的结合。我们研究了隐式滤波器类型,其灵感来自于不连续伽辽金和有限体积方案的解表示并模仿离散化算子的行为,以及作为典型显式 LES 滤波器代表的全局傅立叶截止滤波器。在完美的 LES 框架内,我们根据衰减的均匀各向同性湍流的直接数值模拟结果计算不同 LES 滤波器函数的精确闭合项。具有多层感知器 (MLP) 或门控循环单元 (GRU) 架构的多个 ANN 被训练来仅从粗尺度输入数据中预测计算出的闭合项。对于给定的应用程序,GRU 架构在准确性方面明显优于 MLP 网络,同时在网络的预测与所有考虑的滤波器函数的精确闭合项之间达到高达 99.9% 的互相关。GRU 网络也被证明可以很好地泛化不同的 LES 过滤器和分辨率。因此,本研究可被视为研究基于数据的 LES 建模方法的起点,该方法不仅包括物理闭合项,还考虑了隐式滤波 LES 中的离散化效应。网络预测与所有考虑的过滤器函数的精确闭合项之间的互相关为 9%。GRU 网络也被证明可以很好地泛化不同的 LES 过滤器和分辨率。因此,本研究可被视为研究基于数据的 LES 建模方法的起点,该方法不仅包括物理闭合项,还考虑了隐式滤波 LES 中的离散化效应。网络预测与所有考虑的过滤器函数的精确闭合项之间的互相关为 9%。GRU 网络也被证明可以很好地泛化不同的 LES 过滤器和分辨率。因此,本研究可被视为研究基于数据的 LES 建模方法的起点,该方法不仅包括物理闭合项,还考虑了隐式滤波 LES 中的离散化效应。
更新日期:2020-10-08
down
wechat
bug