当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complexity of the list homomorphism problem in hereditary graph classes
arXiv - CS - Computational Complexity Pub Date : 2020-10-07 , DOI: arxiv-2010.03393
Karolina Okrasa and Pawe{\l} Rz\k{a}\.zewski

A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. For a fixed graph $H$, in the list homomorphism problem, denoted by LHom($H$), we are given a graph $G$, whose every vertex $v$ is equipped with a list $L(v) \subseteq V(H)$. We ask if there exists a homomorphism $f$ from $G$ to $H$, in which $f(v) \in L(v)$ for every $v \in V(G)$. Feder, Hell, and Huang [JGT~2003] proved that LHom($H$) is polynomial time-solvable if $H$ is a bi-arc-graph, and NP-complete otherwise. We are interested in the complexity of the LHom($H$) problem in graphs excluding a copy of some fixed graph $F$ as an induced subgraph. It is known that if $F$ is connected and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom($H$) problem is NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the remaining cases for connected graphs $F$. If $F$ is a path, we exhibit a full dichotomy. We define a class called predacious graphs and show that if $H$ is not predacious, then for every fixed $t$ the LHom($H$) problem can be solved in quasi-polynomial time in $P_t$-free graphs. On the other hand, if $H$ is predacious, then there exists $t$, such that LHom($H$) cannot be solved in subexponential time in $P_t$-free graphs. If $F$ is a subdivided claw, we show a full dichotomy in two important cases: for $H$ being irreflexive (i.e., with no loops), and for $H$ being reflexive (i.e., where every vertex has a loop). Unless the ETH fails, for irreflexive $H$ the LHom($H$) problem can be solved in subexponential time in graphs excluding a fixed subdivided claw if and only if $H$ is non-predacious and triangle-free. If $H$ is reflexive, then LHom($H$) cannot be solved in subexponential time whenever $H$ is not a bi-arc graph.

中文翻译:

遗传图类中列表同态问题的复杂性

从图 $G$ 到图 $H$ 的同态是从 $V(G)$ 到 $V(H)$ 的边保持映射。对于固定图$H$,在表同态问题中,记为LHom($H$),我们给定一个图$G$,其每个顶点$v$ 都配备一个表$L(v) \subseteq V(H)$。我们询问是否存在从 $G$ 到 $H$ 的同态 $f$,其中 $f(v) \in L(v)$ 对于每个 $v \in V(G)$。Feder、Hell 和 Huang [JGT~2003] 证明,如果 $H$ 是双弧图,则 LHom($H$) 是多项式时间可解的,否则为 NP-完全图。我们感兴趣的是图中 LHom($H$) 问题的复杂性,不包括一些固定图 $F$ 作为诱导子图的副本。已知如果 $F$ 是连通的并且不是路径也不是细分的爪子,那么对于每个非双弧图,LHom($H$) 问题是 NP-完全的,不能在次指数时间内解决,除非 ETH 失败。我们考虑连通图 $F$ 的其余情况。如果 $F$ 是一条路径,我们表现出一个完整的二分法。我们定义了一个称为捕食图的类,并表明如果 $H$ 不是捕食图,那么对于每个固定的 $t$,LHom($H$) 问题可以在无 $P_t$ 图中的准多项式时间内解决。另一方面,如果 $H$ 是捕食性的,则存在 $t$,使得 LHom($H$) 在无 $P_t$ 的图中无法在次指数时间内求解。如果 $F$ 是一个细分的爪子,我们在两个重要的情况下展示了一个完整的二分法:$H$ 是非自反的(即没有循环),而 $H$ 是自反的(即每个顶点都有一个循环) . 除非 ETH 失败,对于非自反的 $H$,LHom($H$) 问题可以在不包括固定细分爪的图中以次指数时间解决,当且仅当 $H$ 是非掠夺性和无三角形的。
更新日期:2020-10-08
down
wechat
bug