当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermomechanical modelling of the tribological surface transformations in the railroad network (white eching layer)
Mechanics of Materials ( IF 3.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.mechmat.2020.103636
Léo Thiercelin , Loïc Saint-Aimé , Frédéric Lebon , Aurélien Saulot

Abstract The formation of Tribological Surface Transformation (TST), known as white etching layer (WEL) in the wheel–rail contact, corresponds to progressive and irreversible transformations on the surface of material due to the interaction of contact between two materials. The presence of WEL, damages the rails and cracks could initiate easily. Understanding the mechanisms of formation of WEL is important to prevent the problem of Rolling Contact Fatigue (RCF) in the rail network. The formation of the WEL is assumed to be due to a cyclic shear loading (at a high-frequency), under hydrostatic pressure associated with a moderate rise in temperature. Based on Transformed Induced Plasticity models and a previous model, a thermo-mechanical model taking into account the hydrostatic pressure, the shear stress and the temperature is presented to predict the formation of the WEL. An internal variable, representing all the steps of evolution of the microstructure leading to the WEL formation is introduced. 2-D finite element simulations of the rail running band (in the longitudinal direction) submitted to a cyclic thermomechanical loading are conducted to identify the model. The results are in good agreement with experimental observations for the size of the transformed zone after a given number of trains. The non-uniform repartition of WEL observed on the running band on trains could be explained by local variations of the thermomechanical loading.

中文翻译:

铁路网络中摩擦学表面转变的热机械建模(白色蚀刻层)

摘要 摩擦表面转化 (TST) 的形成,称为轮轨接触中的白色蚀刻层 (WEL),对应于材料表面由于两种材料之间的相互作用而产生的渐进和不可逆转化。WEL 的存在很容易损坏导轨和裂缝。了解 WEL 的形成机制对于防止铁路网络中的滚动接触疲劳 (RCF) 问题很重要。假设 WEL 的形成是由于循环剪切载荷(高频),在与温度适度升高相关的静水压力下。基于转换的诱导塑性模型和先前的模型,一个考虑静水压力的热机械模型,提供剪切应力和温度以预测 WEL 的形成。引入了一个内部变量,代表导致 WEL 形成的微观结构演变的所有步骤。对承受循环热机械载荷的轨道运行带(纵向)进行二维有限元模拟,以识别模型。结果与在给定列车数量后变换区域大小的实验观察结果非常一致。在列车运行带上观察到的 WEL 的非均匀重新分配可以通过热机械载荷的局部变化来解释。对承受循环热机械载荷的轨道运行带(纵向)进行二维有限元模拟,以识别模型。结果与在给定列车数量后变换区域大小的实验观察结果非常一致。在列车运行带上观察到的 WEL 的非均匀重新分配可以通过热机械载荷的局部变化来解释。对承受循环热机械载荷的轨道运行带(纵向)进行二维有限元模拟,以识别模型。结果与在给定列车数量后变换区域大小的实验观察结果非常一致。在列车运行带上观察到的 WEL 的非均匀重新分配可以通过热机械载荷的局部变化来解释。
更新日期:2020-12-01
down
wechat
bug