当前位置: X-MOL 学术Solid State Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proton and deuteron electrodiffusion in a D263T borosilicate glass by controlled charge attachment from a fs-plasma
Solid State Ionics ( IF 3.2 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.ssi.2020.115469
Jan L. Wiemer , Sarah Mardeck , Carsten Zülch , Karl-Michael Weitzel

The femtosecond laser plasma charge attachment induced transport (fs-plasma CAIT) technique is considerably extended and applied to study ion transport in a borosilicate glass. The technique is based on attaching polarity selected charge carriers from a fs-laser to the front side of a sample, which induces transport of mobile charge carriers in this sample. The plasma-CAIT spectrometer is placed into a housing allowing the control of the plasma medium and its pressure. A model system is described, which allows the determination of the internal resistance of the plasma. This in turn provides access to absolute ionic conductivities without the need of external calibration. The improved fs-plasma CAIT technique is applied to study alkali ion conductivity in a D263T glass by attachment of protons or deuterons from a hydrogen and deuterium plasma, respectively. The range of conductivities is extended by one and a half orders of magnitude compared to previous work. Ex-situ analysis of the irradiated D263T samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed a replacement of sodium and potassium ions being the native mobile charge carriers in the glass by external proton and deuterons, respectively, over up-to 100 nm. The concentration depth profiles generated by the electrodiffusion involve a local pile-up of the potassium concentration above the bulk concentration and a concomitant further depletion of the faster sodium at the H+ / D+ diffusion front. The results are fully in line with previous observation in a Cs+ CAIT experiment. The significant advancement of the current work lies in the demonstration that alkali ion transport can be probed by using protons or deuterons as markers for replacement in the native sites of the alkali ions. Ultimately the plasma medium can be freely chosen from a large range of chemical species turning the plasma-CAIT technique into an almost universal tool to study DC transport in solid ionics.



中文翻译:

D263T硼硅酸盐玻璃中的质子和氘核电扩散,来自fs等离子体的受控电荷附着

飞秒激光等离子体电荷附着诱导传输(fs-plasma CAIT)技术得到了极大的扩展,并被用于研究硼硅酸盐玻璃中的离子传输。该技术基于将来自fs激光器的极性选择的电荷载流子附着到样品的正面,这会诱导该样品中移动电荷载流子的传输。等离子体CAIT光谱仪放置在允许控制等离子体介质及其压力的外壳中。描述了一种模型系统,该模型系统允许确定等离子体的内部电阻。从而无需外部校准即可获得绝对离子电导率。改进的fs-plasma CAIT技术用于研究D263T玻璃中的碱离子传导性,方法是将氢和氘等离子体中的质子或氘原子附着,分别。与以前的工作相比,电导率范围扩大了一个半数量级。通过飞行时间二次离子质谱(ToF-SIMS)对被辐照的D263T样品进行异位分析表明,在玻璃中,钠和钾离子分别是玻璃中的天然移动电荷载体,分别被外部质子和氘核取代高达100 nm。电扩散产生的浓度深度分布图包括钾浓度在局部浓度以上的局部堆积以及在H处更快的钠的进一步消耗 通过飞行时间二次离子质谱(ToF-SIMS)对被辐照的D263T样品进行异位分析表明,在玻璃中,钠和钾离子分别是玻璃中的天然移动电荷载体,分别被外部质子和氘核取代高达100 nm。电扩散产生的浓度深度分布图包括钾浓度在局部浓度以上的局部堆积以及在H处更快的钠的进一步消耗 通过飞行时间二次离子质谱(ToF-SIMS)对被辐照的D263T样品进行异位分析表明,在玻璃中,钠和钾离子分别是玻璃中的天然移动电荷载体,分别被外部质子和氘核取代高达100 nm。电扩散产生的浓度深度分布图包括钾浓度在局部浓度以上的局部堆积以及在H处更快的钠的进一步消耗+ / D +扩散前沿。结果与先前在Cs + CAIT实验中观察到的结果完全一致。当前工作的重大进展在于证明可以通过使用质子或氘核作为标记来替换碱金属离子的天然位点来探测碱金属离子的运输。最终,可以从众多化学物种中自由选择血浆介质,从而使血浆CAIT技术成为研究固体离子中DC传输的几乎通用的工具。

更新日期:2020-10-07
down
wechat
bug