当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Balancing truncation and round-off errors in FEM: One-dimensional analysis
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.cam.2020.113219
Jie Liu; Matthias Möller; Henk M. Schuttelaars

In finite element methods, the accuracy of the solution cannot increase indefinitely since the round-off error related to limited computer precision increases when the number of degrees of freedom (DoFs) is large enough. Because a priori information of the highest attainable accuracy is of great interest, we construct an innovative method to obtain the highest attainable accuracy given the order of the elements. In this method, the truncation error is extrapolated when it converges at the asymptotic rate, and the bound of the round-off error follows from a generically valid error estimate, obtained and validated through extensive numerical experiments. The highest attainable accuracy is obtained by minimizing the sum of these two types of errors. We validate this method using a one-dimensional Helmholtz equation in space. It shows that the highest attainable accuracy can be accurately predicted, and the CPU time required is much smaller compared with that using successive grid refinement.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug