当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
An online self-organizing modular neural network for nonlinear system modeling
Applied Soft Computing ( IF 5.472 ) Pub Date : 2020-10-07 , DOI: 10.1016/j.asoc.2020.106777
Junfei Qiao; Xin Guo; Wenjing Li

Modular neural network (MNN) has distinct advantage in many fields such as pattern recognition and pattern recognition. However it is still a challenge to dynamically adjust the MNN structure for dynamic nonlinear system modeling. This paper proposes a novel online self-organizing MNN (OSOMNN) for nonlinear system modeling. In OSOMNN, an online task decomposition algorithm and a self-organizing algorithm for subnetwork are introduced. Firstly, the task decomposition algorithm is implemented by the online clustering method based on distance and local density, which can online divide the original task into several simpler subtasks. Then subnetworks with single-layer feedforward neural network are built to learn the divided subtasks. Moreover, this paper develops a self-organizing algorithm for subnetwork, which can dynamically adjust its structure and is trained by the improved online gradient method with fixed memory mechanism (FMOGM). To demonstrate the effectiveness of OSOMNN for nonlinear system modeling, experimental investigations using four benchmark nonlinear systems and the monthly sunspots time series show that OSOMNN can automatically add or merge the subnetwork modules and optimize the structure of subnetworks for nonlinear system modeling with a better generalization performance than the established alternatives.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug