当前位置: X-MOL 学术Prog. Nat. Sci. Mater. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pyrolysis of Iron(III) porphyrin coated Pt/C toward oxygen reduction reaction in acidic medium
Progress in Natural Science: Materials International ( IF 4.7 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.pnsc.2020.08.012
Yang Lv , Huiyuan Liu , Jiaqi Qin , Rui Gao , Yunlong Zhang , Yan Xie , Jia Li , Yujiang Song

Abstract Design and synthesis of highly active and durable electrocatalysts toward oxygen reduction reaction (ORR) is of particular importance for proton exchange membrane fuel cells (PEMFCs), yet remains a grand challenge. Herein, we report the deposition of iron (III) porphyrin (FeP) on house-made Pt/C by rotary evaporation of the mixture of FeP and house-made Pt/C dispersed in chloroform, followed by pyrolysis at 650 °C in argon atmosphere. This approach led to the synthesis of new non-precious metal electrocatalyst (NPME)-Pt/C composites (Pt/C–FeP) with an average nanoparticle diameter of 3.1 ± 1.5 nm without aggregation. According to X-ray photoelectron spectroscopy (XPS), the binding energy of Pt 4f7/2 became larger due to the presence of pyrolyzed FeP. In addition, the electrochemically active surface area (ECSA) of Pt/C–FeP-650 is 65 m2/g less than that of house-made Pt/C (80.2 m2/g). This implies that the pyrolyzed FeP may have partially covered the surface of Pt nanoparticles and thus lowering the ECSA. Interestingly, the mass activity (MA) of Pt/C–FeP turns out to be 349.0 mA/mgPt @0.9 V vs. RHE, which is 2.6 times and 1.5 times of house-made Pt/C and commercial Pt/C, respectively. It is speculated that the electronic interaction and possible synergy between Pt and pyrolyzed FeP as NPME might have contributed to the ORR activity improvement despite of partial loss of ECSA. During accelerated durability tests (ADTs), the MA of Pt/C–FeP-650 degrades 64.3% inferior to commercial Pt/C (52.2%). The main reason likely arises from the degradation of pyrolyzed FeP, which is a bottleneck problem confronting NPMEs.

中文翻译:

铁(III)卟啉包覆的Pt/C在酸性介质中热解氧还原反应

摘要 设计和合成用于氧还原反应 (ORR) 的高活性和耐用电催化剂对于质子交换膜燃料电池 (PEMFC) 尤其重要,但仍然是一个巨大的挑战。在此,我们报告了铁 (III) 卟啉 (FeP) 通过旋转蒸发分散在氯仿中的 FeP 和自制 Pt/C 的混合物在自制 Pt/C 上的沉积,然后在 650°C 的氩气中热解气氛。这种方法导致合成了平均纳米颗粒直径为 3.1 ± 1.5 nm 且无聚集的新型非贵金属电催化剂 (NPME)-Pt/C 复合材料 (Pt/C-FeP)。根据 X 射线光电子能谱 (XPS),由于热解 FeP 的存在,Pt 4f7/2 的结合能变大。此外,Pt/C-FeP-650 的电化学活性表面积 (ECSA) 比自制的 Pt/C (80.2 m2/g) 小 65 m2/g。这意味着热解的 FeP 可能部分覆盖了 Pt 纳米粒子的表面,从而降低了 ECSA。有趣的是,Pt/C–FeP 的质量活度 (MA) 为 349.0 mA/mgPt @0.9 V vs. RHE,分别是自制 Pt/C 和商业 Pt/C 的 2.6 倍和 1.5 倍. 据推测,尽管 ECSA 部分丢失,但 Pt 和热解 FeP 作为 NPME 之间的电子相互作用和可能的协同作用可能有助于提高 ORR 活性。在加速耐久性测试 (ADT) 中,Pt/C–FeP-650 的 MA 降解 64.3%,低于商业 Pt/C (52.2%)。主要原因可能来自热解 FeP 的降解,
更新日期:2020-12-01
down
wechat
bug