当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parallel Direct Numerical Simulation and Analysis of Turbulent Rayleigh–Bénard Convection at Moderate Rayleigh Numbers Using an Efficient Algorithm
Computers & Fluids ( IF 2.8 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.compfluid.2020.104754
Ilyas Yilmaz

Abstract Direct numerical simulation of turbulent Rayleigh-Benard convection up to Rayleigh number 108 is performed using a fully-implicit, non-dissipative, discrete kinetic energy-conserving algorithm and a parallel flow solver based on it. The algorithm is especially suitable for simulating low-Mach number, variable density/viscosity, transitional and turbulent flows with or without heat transfer. Furthermore, since it does not rely on the Boussinesq assumption, large temperature differences and high Rayleigh numbers can be handled without loss of accuracy, unlike the pure incompressible ones. It is first shown that the algorithm is able to predict the evolution of thermally-driven instability to turbulent regime and all the characteristics of turbulent convection accurately, using low- and high-order turbulent statistics and various secondary diagnostics derived. Then, effects of increasing Rayleigh numbers on the development of the instability are analyzed in detail. Additionally, Nusselt-Rayleigh scaling properties are studied and a scaling relation is provided. Results show that Rayleigh-Benard convection at relatively high Rayleigh numbers, corresponding to a boundary layer-dominated regime and little beyond it to a bulk-dominated regime, is characterized by weakening thermal fluctuations, thinning thermal boundary layers, increasing vertical velocity fluctuations and decreasing skewness. It is also observed that the turbulent heat flux dominates the heat transfer. Finally, the corresponding Nusselt-Rayleigh scaling relation is predicted as N u = 0.132 R a 0.297 .

中文翻译:

使用高效算法在中等瑞利数下并行直接数值模拟和分析湍流瑞利-贝纳德对流

摘要 利用全隐式、非耗散、离散动能守恒算法和基于该算法的并行流动求解器,对高达瑞利数108的湍流瑞利-贝纳对流进行直接数值模拟。该算法特别适用于模拟低马赫数、可变密度/粘度、有或无传热的过渡和湍流。此外,由于它不依赖于 Boussinesq 假设,因此可以在不损失精度的情况下处理大温差和高瑞利数,这与纯不可压缩的不同。首次表明该算法能够准确预测热驱动不稳定性向湍流状态的演变以及湍流对流的所有特征,使用低阶和高阶湍流统计和衍生的各种二次诊断。然后,详细分析了瑞利数增加对不稳定性发展的影响。此外,还研究了 Nusselt-Rayleigh 标度属性并提供了标度关系。结果表明,瑞利数相对较高的瑞利-贝纳对流,对应于边界层主导的区域,很少超出它的以块为主的区域,其特征是热波动减弱、热边界层变薄、垂直速度波动增加和降低偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。详细分析了增加瑞利数对不稳定性发展的影响。此外,还研究了 Nusselt-Rayleigh 标度属性并提供了标度关系。结果表明,瑞利数相对较高的瑞利-贝纳对流,对应于边界层主导的区域,很少超出它的以块为主的区域,其特征是热波动减弱、热边界层变薄、垂直速度波动增加和降低偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。详细分析了增加瑞利数对不稳定性发展的影响。此外,还研究了 Nusselt-Rayleigh 标度属性并提供了标度关系。结果表明,瑞利数相对较高的瑞利-贝纳对流,对应于边界层主导的区域,很少超出它的以块为主的区域,其特征是热波动减弱、热边界层变薄、垂直速度波动增加和降低偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。研究了 Nusselt-Rayleigh 标度属性并提供了标度关系。结果表明,瑞利数相对较高的瑞利-贝纳对流,对应于边界层主导的区域,很少超出它的以块为主的区域,其特征是热波动减弱、热边界层变薄、垂直速度波动增加和降低偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。研究了 Nusselt-Rayleigh 标度属性并提供了标度关系。结果表明,瑞利数相对较高的瑞利-贝纳对流,对应于边界层主导的区域,很少超出它的以块为主的区域,其特征是热波动减弱、热边界层变薄、垂直速度波动增加和降低偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。减薄热边界层,增加垂直速度波动并减少偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。减薄热边界层,增加垂直速度波动并减少偏度。还观察到湍流热通量在热传递中占主导地位。最后,相应的 Nusselt-Rayleigh 比例关系被预测为 N u = 0.132 R a 0.297 。
更新日期:2020-12-01
down
wechat
bug