当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbonate-promoted C–H carboxylation of electron-rich heteroarenes
Chemical Science ( IF 8.4 ) Pub Date : 2020-10-05 , DOI: 10.1039/d0sc04548a
Tyler M. Porter 1, 2, 3, 4 , Matthew W. Kanan 1, 2, 3, 4
Affiliation  

C–H carboxylation is an attractive transformation for both streamlining synthesis and valorizing CO2. The high bond strength and very low acidity of most C–H bonds, as well as the low reactivity of CO2, present fundamental challenges for this chemistry. Conventional methods for carboxylation of electron-rich heteroarenes require very strong organic bases to effect C–H deprotonation. Here we show that alkali carbonates (M2CO3) dispersed in mesoporous TiO2 supports (M2CO3/TiO2) effect CO32−-promoted C–H carboxylation of thiophene- and indole-based heteroarenes in gas–solid reactions at 200–320 °C. M2CO3/TiO2 materials are strong bases in this temperature regime, which enables deprotonation of very weakly acidic bonds in these substrates to generate reactive carbanions. In addition, we show that M2CO3/TiO2 enables C3 carboxylation of indole substrates via an apparent electrophilic aromatic substitution mechanism. No carboxylations take place when M2CO3/TiO2 is replaced with un-supported M2CO3, demonstrating the critical role of carbonate dispersion and disruption of the M2CO3 lattice. After carboxylation, treatment of the support-bound carboxylate products with dimethyl carbonate affords isolable esters and the M2CO3/TiO2 material can be regenerated upon heating under vacuum. Our results provide the basis for a closed cycle for the esterification of heteroarenes with CO2 and dimethyl carbonate.

中文翻译:

碳酸盐促进富电子杂芳烃的C–H羧化

C–H羧基化对于简化合成过程和使CO 2增值都是有吸引力的转化。大多数C–H键的高键强度和极低的酸度,以及CO 2的低反应性,对该化学构成了根本挑战。富电子杂芳基羧化的常规方法需要非常强的有机碱才能实现C–H去质子化。在这里,我们表明分散在中孔TiO 2中的碱金属碳酸盐(M 2 CO 3)担载了(M 2 CO 3 / TiO 2)效应CO 3 2-促进了200–320°C的气固反应中基于噻吩和吲哚的杂芳烃的C–H羧基化。在此温度范围内,M 2 CO 3 / TiO 2材料是强碱,这使这些基材中的弱酸性键脱质子化,从而生成反应性碳负离子。此外,我们表明,M 2 CO 3 / TiO 2能够通过表观亲电芳族取代机制使吲哚底物进行C3羧化。当用未负载的M 2 CO 3代替M 2 CO 3 / TiO 2时,不会发生羧化反应,证明了碳酸盐分散和破坏M 2 CO 3晶格的关键作用。羧化后,用碳酸二甲酯处理与载体结合的羧酸盐产物,得到可分离的酯,并且在真空下加热可再生M 2 CO 3 / TiO 2材料。我们的结果为杂芳烃与CO 2和碳酸二甲酯酯化的封闭循环提供了基础。
更新日期:2020-10-15
down
wechat
bug