当前位置: X-MOL 学术Coatings › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Porosity Thermal Barrier Coatings from High-Power Plasma Spray Equipment—Processing, Performance and Economics
Coatings ( IF 3.4 ) Pub Date : 2020-10-04 , DOI: 10.3390/coatings10100957
Nicholas Curry , Matthias Leitner , Karl Körner

High-porosity thermal barrier coatings are utilized on gas turbine components where maximizing the coating thermal insulation capability is the primary design criteria. Though such coatings have been in industrial use for some time, manufacturing high-porosity coatings quickly and efficiently has proven challenging. With the industry demand to increase productivity and reduce waste generation, there is a drive to look at improved coating manufacturing methods. This article looks at high-porosity coatings manufactured using a high-power plasma system in comparison with a current industrial coating. A commercial spray powder is compared with an experimental Low-Density powder developed to maximize coating porosity without sacrificing coating deposition efficiency. The resultant coatings have been assessed for their microstructure, adhesion strength, furnace cyclic lifetime, thermal conductivity and sintering behavior. Finally, the impact of spray processing on coating economics is discussed. The use of a Low-Density powder with a high-power plasma system allows a high-porosity coating to be manufactured more efficiently and more cost effectively than with conventional powder feedstock. The improvement in thermal properties for the experimental coating demonstrates there is scope to improve industrial coatings by designing with specific thermal resistance rather than thickness and porosity as coating requirements.

中文翻译:

大功率等离子喷涂设备的高孔隙率热障涂层—工艺,性能和经济性

高孔隙率的热障涂层用于燃气轮机部件,其中最大程度地提高涂层的隔热性能是主要设计标准。尽管这种涂料已经在工业上使用了一段时间,但是事实证明,快速有效地制造高孔隙率涂料具有挑战性。随着行业对提高生产率和减少废物产生的需求,人们开始寻求改进的涂料制造方法。本文着眼于与目前的工业涂料相比,使用大功率等离子体系统制造的高孔隙率涂料。将商业喷涂粉末与实验性低密度粉末进行比较,该粉末被开发为在不牺牲涂层沉积效率的情况下最大化涂层孔隙率。已经评估了所得涂层的微观结构,粘合强度,炉子的循环寿命,热导率和烧结行为。最后,讨论了喷涂工艺对涂料经济性的影响。与常规粉末原料相比,将低密度粉末与高功率等离子体系统配合使用可更有效地制造高孔隙率涂层。实验涂层的热性能的改善表明,通过设计比热阻而不是厚度和孔隙率作为涂层要求,可以改善工业涂料的范围。与常规粉末原料相比,将低密度粉末与高功率等离子体系统配合使用可更有效地制造高孔隙率涂层。实验涂层的热性能的改善表明,通过设计比热阻而不是厚度和孔隙率作为涂层要求,可以改善工业涂料的范围。与常规粉末原料相比,将低密度粉末与高功率等离子体系统配合使用可更有效地制造高孔隙率涂层。实验涂层的热性能的改善表明,通过设计比热阻而不是厚度和孔隙率作为涂层要求,可以改善工业涂料的范围。
更新日期:2020-10-05
down
wechat
bug