当前位置: X-MOL 学术Anim. Feed Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Future directions of animal feed technology research to meet the challenges of a changing world
Animal Feed Science and Technology ( IF 3.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.anifeedsci.2020.114692
A.F.B. van der Poel , M.R. Abdollahi , H. Cheng , R. Colovic , L.A. den Hartog , D. Miladinovic , G. Page , K. Sijssens , J.F. Smillie , M. Thomas , W. Wang , P. Yu , W.H. Hendriks

Abstract Feed technology involves the processing of ingredients and the manufacture of animal feeds and is an integral part of animal production systems to provide high quality and nutritious food. The objective is to transform low quality ingredients into higher value feed components, and improve nutrient utilization of compound feeds. Animal feed, therefore, has a social responsibility to contribute to more sustainable food production systems. Further understanding of the structures and functional properties of feed components, their changes with different primary and secondary processing and their conditions, are essential to more accurately meet nutrient requirements of animals. In addition, it will enable a more accurate assessment of overall costs of processing or production with respect to the societal responsibility of feed processing; this may include energy use, carbon footprint, use of water resources and life cycle assessment. Accurate and fast testing technologies should account for the variability within ingredients and the different practices used in the equipment and raw material processing, as well as those in feed mills. Big data will play a pivotal role to model specific aspects of feed manufacturing and could enable the development of a model integrating characteristics of diet ingredients, recipe and processing conditions, whilst optimizing energy consumption, (physical) feed quality and production rate. Collaboration between skilled data scientists, machine experts, feed manufacturing technologists and nutritionists, using advanced data analytics is, therefore, required for future process optimisation. An improved interaction between those responsible for the actual formulation of animal diets, feed technologists and mill operators may result in a more constant final feed product quality and the lowest electrical and fossil energy consumption during manufacture, despite inclusion of alternative/substitute ingredients. Lesser known, novel processing techniques may significantly contribute to improve the nutritional value of raw materials and complete feeds. However, only a few techniques may be scalable to economically feasible processes, while others may only be applicable to one animal species and not usable as a general process. In addition, modern feed mills need flexibility and the ability to switch to serve customer wishes and logistics where feed recipes and feed forms are concerned. A major constraint to conduct research in feed processing is the difficulty to acquire attention and funding. More attention should be given to feed additives in processed feed (mainly in pellet form), with research focused on the interaction effects between feed processing conditions, feed components and feed additives. Finally, future feed technologists will require recognized qualifications, possibly to a diploma level. Courses must be successfully completed and include knowledge on smart manufacturing and integrated process control systems. From a feed industry perspective, success of participation in the next industrial feed mill development will be determined by how well staff are prepared and trained.

中文翻译:

应对不断变化的世界挑战的动物饲料技术研究的未来方向

摘要 饲料技术涉及原料加工和动物饲料的制造,是动物生产系统的一个组成部分,可提供高质量和营养的食物。目标是将低质量的原料转化为更高价值的饲料成分,并提高配合饲料的营养利用率。因此,动物饲料具有社会责任,为更可持续的食品生产系统做出贡献。进一步了解饲料成分的结构和功能特性,它们随着不同初级和二级加工及其条件的变化,对于更准确地满足动物的营养需求至关重要。此外,它将能够更准确地评估与饲料加工的社会责任相关的加工或生产的总体成本;这可能包括能源使用、碳足迹、水资源使用和生命周期评估。准确和快速的测试技术应考虑成分的可变性以及设备和原材料加工以及饲料厂中使用的不同做法。大数据将在对饲料制造的特定方面进行建模方面发挥关键作用,并且可以开发一个整合日粮成分、配方和加工条件特征的模型,同时优化能源消耗、(物理)饲料质量和生产率。因此,未来的流程优化需要熟练的数据科学家、机器专家、饲料制造技术人员和营养学家之间使用高级数据分析进行协作。尽管包含替代/替代成分,但负责动物饲料实际配方的人员、饲料技术人员和工厂操作员之间的改进互动可能会导致更稳定的最终饲料产品质量和制造过程中最低的电力和化石能源消耗。鲜为人知的新型加工技术可能会显着提高原材料和全价饲料的营养价值。然而,只有少数技术可以扩展到经济上可行的过程,而其他技术可能只适用于一种动物物种,不能用作一般过程。此外,现代饲料厂需要灵活性和切换到满足客户需求和饲料配方和饲料形式的物流的能力。饲料加工研究的一个主要制约因素是难以获得关注和资金。应更加关注加工饲料(主要是颗粒形式)中的饲料添加剂,研究重点是饲料加工条件、饲料成分和饲料添加剂之间的相互作用。最后,未来的饲料技术人员将需要公认的资格,可能达到文凭水平。课程必须成功完成,包括智能制造和集成过程控制系统的知识。从饲料行业的角度来看,参与下一个工业饲料厂发展的成功将取决于员工的准备和培训程度。应更加关注加工饲料(主要是颗粒形式)中的饲料添加剂,研究重点是饲料加工条件、饲料成分和饲料添加剂之间的相互作用。最后,未来的饲料技术人员将需要公认的资格,可能达到文凭水平。课程必须成功完成,包括智能制造和集成过程控制系统的知识。从饲料行业的角度来看,参与下一个工业饲料厂发展的成功将取决于员工的准备和培训程度。应更加关注加工饲料(主要是颗粒形式)中的饲料添加剂,研究重点是饲料加工条件、饲料成分和饲料添加剂之间的相互作用。最后,未来的饲料技术人员将需要公认的资格,可能达到文凭水平。课程必须成功完成,包括智能制造和集成过程控制系统的知识。从饲料行业的角度来看,参与下一个工业饲料厂发展的成功将取决于员工的准备和培训程度。课程必须成功完成,包括智能制造和集成过程控制系统的知识。从饲料行业的角度来看,参与下一个工业饲料厂发展的成功将取决于员工的准备和培训程度。课程必须成功完成,包括智能制造和集成过程控制系统的知识。从饲料行业的角度来看,参与下一个工业饲料厂发展的成功将取决于员工的准备和培训程度。
更新日期:2020-12-01
down
wechat
bug