当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Signatures of a liquid-liquid transition in an ab initio deep neural network model for water [Chemistry]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2020-10-20 , DOI: 10.1073/pnas.2015440117
Thomas E. Gartner 1 , Linfeng Zhang 2 , Pablo M. Piaggi 1 , Roberto Car 1, 2, 3, 4 , Athanassios Z. Panagiotopoulos 4, 5 , Pablo G. Debenedetti 5
Affiliation  

The possible existence of a metastable liquid–liquid transition (LLT) and a corresponding liquid–liquid critical point (LLCP) in supercooled liquid water remains a topic of much debate. An LLT has been rigorously proved in three empirically parametrized molecular models of water, and evidence consistent with an LLT has been reported for several other such models. In contrast, experimental proof of this phenomenon has been elusive due to rapid ice nucleation under deeply supercooled conditions. In this work, we combined density functional theory (DFT), machine learning, and molecular simulations to shed additional light on the possible existence of an LLT in water. We trained a deep neural network (DNN) model to represent the ab initio potential energy surface of water from DFT calculations using the Strongly Constrained and Appropriately Normed (SCAN) functional. We then used advanced sampling simulations in the multithermal–multibaric ensemble to efficiently explore the thermophysical properties of the DNN model. The simulation results are consistent with the existence of an LLCP, although they do not constitute a rigorous proof thereof. We fit the simulation data to a two-state equation of state to provide an estimate of the LLCP’s location. These combined results—obtained from a purely first-principles approach with no empirical parameters—are strongly suggestive of the existence of an LLT, bolstering the hypothesis that water can separate into two distinct liquid forms.



中文翻译:

水的从头开始深度神经网络模型中液-液过渡的特征[化学]

在过冷的液态水中是否可能存在亚稳态的液-液过渡(LLT)和相应的液-液临界点(LLCP),仍然是许多争论的话题。在三个根据经验参数化的水分子模型中已经严格证明了LLT,并且已经针对其他几种此类模型报告了与LLT一致的证据。相比之下,由于在极度过冷的条件下快速的冰成核作用,这种现象的实验证据难以捉摸。在这项工作中,我们结合了密度泛函理论(DFT),机器学习和分子模拟,以进一步揭示水中LLT的可能存在。我们训练了深度神经网络(DNN)模型,以使用强约束和适当赋范(SCAN)函数从DFT计算中表示水的从头算势能面。然后,我们在多热-多压集合中使用了先进的采样模拟,以有效地探索DNN模型的热物理性质。模拟结果与LLCP的存在一致,尽管它们并不构成其严格的证明。我们将模拟数据拟合为两态状态方程,以提供LLCP位置的估计值。这些合并的结果(从没有经验参数的纯第一原理方法获得)强烈暗示了LLT的存在,支持了水可以分离为两种不同液体形式的假设。然后,我们在多热-多压集合中使用了先进的采样模拟,以有效地探索DNN模型的热物理性质。仿真结果与LLCP的存在一致,尽管它们并不构成其严格的证明。我们将模拟数据拟合为两个状态的状态方程,以提供LLCP位置的估计值。这些合并的结果(从没有经验参数的纯第一原理方法获得)强烈暗示了LLT的存在,支持了水可以分离为两种不同液体形式的假设。然后,我们在多热-多压集合中使用了先进的采样模拟,以有效地探索DNN模型的热物理性质。仿真结果与LLCP的存在一致,尽管它们并不构成其严格的证明。我们将模拟数据拟合为两个状态的状态方程,以提供LLCP位置的估计值。这些合并的结果(从没有经验参数的纯第一原理方法获得)强烈暗示了LLT的存在,支持了水可以分成两种不同的液体形式的假设。尽管它们并不构成对其的严格证明。我们将模拟数据拟合为两个状态的状态方程,以提供LLCP位置的估计值。这些合并的结果(从没有经验参数的纯第一原理方法获得)强烈暗示了LLT的存在,支持了水可以分成两种不同的液体形式的假设。尽管它们并不构成对其的严格证明。我们将模拟数据拟合为两态状态方程,以提供LLCP位置的估计值。这些合并的结果(从没有经验参数的纯第一原理方法获得)强烈暗示了LLT的存在,支持了水可以分离为两种不同液体形式的假设。

更新日期:2020-10-20
down
wechat
bug