当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Robustness of Minimum Density Power Divergence Estimators and Wald-type test statistics in loglinear models with multinomial sampling
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-10-03 , DOI: 10.1016/j.cam.2020.113214
Aida Calviño; Nirian Martín; Leandro Pardo

In this paper we propose a new family of estimators, Minimum Density Power Divergence Estimators (MDPDE), as a robust generalization of maximum likelihood estimators (MLE) for the loglinear model with multinomial sampling by using the Density Power Divergence (DPD) measure introduced by Basu et al. (1998). Based on these estimators, we further develop two types of confidence intervals (asymptotic and bootstrap ones), as well as a new robust family of Wald-type test statistics for testing a nested sequence of loglinear models. Furthermore, we study theoretically the robust properties of both the MDPDE as well as Wald-type tests through the classical influence function analysis. Finally, a simulation study provides further confirmation of the validity of the theoretical results established in the paper.

更新日期:2020-10-17

 

全部期刊列表>>
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
3分钟学术视频演讲大赛
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
麻省大学
西北大学
湖南大学
华东师范大学
王要兵
化学所
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
陆军军医大学
杨财广
廖矿标
试剂库存
down
wechat
bug